947 resultados para grating targets
Resumo:
We report on the demonstration of an all-fiber femtosecond erbium doped fiber laser passively mode-locked using a 45º tilted fiber grating as an in-fiber polarizer in the laser cavity. The laser generates 600 fs pulses with output pulse energies ~1 nJ. Since the 45° tilted grating has a broad polarization response, the laser output has shown a tunabilty in wavelength from 1548 nm to 1562 nm by simply adjusting the polarization controllers in the cavity.
Resumo:
An optical liquid-level sensor (LLS) based on a long-period fiber grating (LPG) interferometer is proposed and experimentally demonstrated. Two identical 3-dB LPGs are fabricated to form an in-fiber Mach-Zehnder interferometer, and the fiber portion between two LPGs is exposed to the liquid as the sensing element. The sensitivity and measurement range of the sensors employing different orders of cladding modes are investigated both theoretically and experimentally. The experimental results show good linearity and large measurement range. One of the significant advantages of such a sensing structure is that the measurement level is not limited to the length of the LPG itself. Also, the measurement range and sensitivity of the proposed LLS can be readily tailored for a particular applications.
Resumo:
A transversal-load sensor based on the local pressure-induced refractive index change in a chirped fiber Bragg grating (CFBG) is proposed. The local pressure induced refractive index change in the touch point can generate a main transmission peak and several subpeaks on the long wavelength side of the reflection band of the CFBG. The difference of the wavelength shifts for the main transmission peak and the first subpeak is used to measure transversal-load with temperature compensation capability.
Resumo:
In this work, a microchanneled chirped fiber Bragg grating (MCFBG) is proposed and fabricated through the femtosecond laser-assisted chemical etching. The microchannel (~550 µm) gives access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In the experiment, the transmission bands induced by the reduced effective index in the microchannel region were used to sense the surrounding RI and temperature changes. The experimental results show good agreement with the theoretical analysis. The proposed MCFBG offers enhanced RI sensitivity without degrading the robustness of the device showing good application potential as bio-chemical sensors.
Resumo:
The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.
Resumo:
Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.
Resumo:
In this paper, we report a simple fibre laser torsion sensor system using an intracavity tilted fibre grating as a torsion encoded loss filter. When the grating is subjected to twist, it induces loss to the cavity, thus affecting the laser oscillation build-up time. By measuring the build-up time, both twist direction and angle on the grating can be monitored. Using a low-cost photodiode and a two-channel digital oscilloscope, we have characterised the torsion sensing capability of this fibre laser system and obtained a torsion sensitivity of ~412µs/(rad/m) in the dynamic range from -150° to +150°.
Resumo:
A series of LPGs was inscribed in photonic crystal fibre by a low repetition femtosecond laser system. When subjected to bending they were found to be spectrally sensitive to bend orientation and displayed a strong polarisation dependence.
Resumo:
This thesis presents the fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in polymer optical fibre (POF). Possible fabrication techniques were discussed to fabricate FBGs in polymer optical fibre including a detailed description of the phase mask inscription technique used to fabricate FBGs in both single and multi mode microstructured polymer optical fibre (mPOF). Complementing the fabrication of polymer optical fibre Bragg gratings (POFBGs), a technique has been developed to permanently splice POF to silica optical fibre with the use of an optical adhesive. This allowed for the fabricated POFBGs to be characterised away from the optical table, allowing for application specific characterisation. Furthermore Bragg gratings have been fabricated in polymer POF with a Bragg response within the 800nm spectral region. Within this spectral region, POF predominantly manufactured from PMMA experiences considerably smaller attenuation losses when compared to the attenuation losses within the 1550nm spectral region. The effect of thermally annealing fabricated POFBGs has been studied. This included demonstrating the ability to tune the Bragg wavelength of a POFBG sensor to a desired wavelength. Thermal annealing has also been used to manufacture wavelength division multiplexed sensors with the use of a single phase mask. Finally POFBGs have been fabricated in Topas Cyclic Olefin Copolymer. Fabrication of Bragg gratings within this copolymer allowed for the first demonstration of near immunity to relative humidity whilst monitoring changes in temperature of the environment the POFBG sensor was in. Bragg gratings fabricated in the Topas copolymer demonstrated sensitivity to relative humidity which was 65 times less than that of a PMMA based POFBG sensor. This decrease in sensitivity has the potential to significantly reduce the potential of cross sensitivity to relative humidity whilst being employed to monitor measurands such as temperature and axial strain.
Resumo:
We demonstrate an intrinsic biochemical concentration sensor based on a polymer optical fiber Bragg grating. The water content absorbed by the polymer fiber from a surrounding solution depends on the concentration of the solution because of the osmotic effect. The variation of water content in the fiber causes a change in the fiber dimensions and a variation in refractive index and, therefore, a shift in the Bragg wavelength. Saline solutions with concentration from 0% to 22% were used to demonstrate the sensing principle, resulting in a total wavelength shift of 0.9 nm, allowing high-resolution concentration measurements to be realized.
Resumo:
A new type of fibre-optic biochemical concentration sensor based on a polymer optical fibre Bragg grating (POFBG) is proposed. The wavelength of the POFBG varies as a function of analyte concentration. The feasibility of this sensing concept is demonstrated by a saline concentration sensor. When polymer fibre is placed in a water based solution the process of osmosis takes place in this water-fibre system. An osmotic pressure which is proportional to the solution concentration, will apply to the fibre in addition to the hydraulic pressure. It tends to drive the water content out of the fibre and into the surrounding solution. When the surrounding solution concentration increases the osmotic pressure increases to drive the water content out of the fibre, consequently increasing the differential hydraulic pressure and reducing the POFBG wavelength. This process will stop once there is a balance between the osmotic pressure and the differential hydraulic pressure. Similarly when the solution concentration decreases the osmotic pressure decreases, leading to a dominant differential hydraulic pressure which drives the water into the fibre till a new pressure balance is established. Therefore the water content in the polymer fibre - and consequently the POFBG wavelength - depends directly on the solution concentration. A POFBG wavelength change of 0.9 nm was measured for saline concentration varying from 0 to 22%. For a wavelength interrogation system with a resolution of 1 pm, a measurement of solution concentration of 0.03% can be expected.
Resumo:
The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks.
Resumo:
In this work we experimentally investigate the response time of humidity sensors based on polymer optical fiber Bragg gratings. By the use of etching with acetone we can control the poly (methyl methacrylate) based fiber in order to reduce the diffusion time of water into the polymer and hence speed up the relative wavelength change caused by humidity variations. A much improved response time of 12 minutes for humidity decrease and 7 minutes for humidity increase, has been achieved by using a polymer optical fiber Bragg grating with a reduced diameter of 135 microns.
Resumo:
Minimal access procedures in surgery offer benefits of reduced patient recovery time and less pain, yet for the surgeon the task is more complex, as both tactile and visual perception of the working site is reduced. In this paper, experimental evidence of the performance of a novel sensing system embedded in an actuated flexible digit element is presented. The digit represents a steerable tip element of devices such as endoscopes and laparoscopes. This solution is able to discriminate types of contact and tissue interaction, and to feed back this information with the shape of the flexible digit. As an alternative to this information, force level, force distribution, and other quantifiable descriptors can also be evaluated. These can be used to aid perception in processes such as navigation and investigation of tissues through palpation. The solution is pragmatic, and by virtue of its efficient mechanical construction and a polymer construction, it offers opportunities for a disposable element with suitability for magnetic resonance imaging (MRI) and other scanning environments. By using only four photonics sensing elements, full perception of tissue contact and the shape of the actuated digit can be described in the feedback of this information. The distributive sensory method applied to the sensory signals relies on the coupled values of the sensory data transients of the four deployed sensing elements to discriminate tissue interaction directly in near real time.
Resumo:
We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.