939 resultados para gene regulatory network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protection of cyberspace has become one of the highest security priorities of governments worldwide. The EU is not an exception in this context, given its rapidly developing cyber security policy. Since the 1990s, we could observe the creation of three broad areas of policy interest: cyber-crime, critical information infrastructures and cyber-defence. One of the main trends transversal to these areas is the importance that the private sector has come to assume within them. In particular in the area of critical information infrastructure protection, the private sector is seen as a key stakeholder, given that it currently operates most infrastructures in this area. As a result of this operative capacity, the private sector has come to be understood as the expert in network and information systems security, whose knowledge is crucial for the regulation of the field. Adopting a Regulatory Capitalism framework, complemented by insights from Network Governance, we can identify the shifting role of the private sector in this field from one of a victim in need of protection in the first phase, to a commercial actor bearing responsibility for ensuring network resilience in the second, to an active policy shaper in the third, participating in the regulation of NIS by providing technical expertise. By drawing insights from the above-mentioned frameworks, we can better understand how private actors are involved in shaping regulatory responses, as well as why they have been incorporated into these regulatory networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diversity of T cell receptors (TCR) and immunoglobulins (Ig) is generated by V(D)J recombination of antigen receptor (AgR) loci. The Tcra-Tcrd locus is of particular interest because it displays a nested organization of Tcrd and Tcra gene segments and V(D)J recombination follows an intricate developmental program to assemble both TCRδ and TCRα repertoires. However, the mechanisms that dictate the developmental regulation of V(D)J recombination of the Tcra-Tcrd locus remain unclear.

We have previously shown that CCCTC-binding factor (CTCF) regulates Tcra gene transcription and rearrangement through organizing chromatin looping between CTCF- binding elements (CBEs). This study is one of many showing that CTCF functions as a chromatin organizer and transcriptional regulator genome-wide. However, detailed understanding of the impact of specific CBEs is needed to fully comprehend the biological function of CTCF and how CTCF influences the generation of the TCR repertoire during thymocyte development. Thus, we generated several mouse models with genetically modified CBEs to gain insight into the CTCF-dependent regulation of the Tcra-Tcrd locus. We revealed a CTCF-dependent chromatin interaction network at the Tcra-Tcrd locus in double-negative thymocytes. Disruption of a discrete chromatin loop encompassing Dδ, Jδ and Cδ gene segments allowed a single Vδ segment to frequently contact and rearrange to diversity and joining gene segments and dominate the adult TCRδ repertoire. Disruption of this loop also narrowed the TCRα repertoire, which, we believe, followed as a consequence of the restricted TCRδ repertoire. Hence, a single CTCF-mediated chromatin loop directly regulates TCRδ diversity and indirectly regulates TCRα diversity. In addition, we showed that insertion of an ectopic CBE can modify chromatin interactions and disrupt the rearrangement of particular Vδ gene segments. Finally, we investigated the role of YY1 in early T cell development by conditionally deleting YY1 in developing thymocytes. We found that early ablation of YY1 caused severe developmental defects in the DN compartment due to a dramatic increase in DN thymocyte apoptosis. Furthermore, late ablation of YY1 resulted in increased apoptosis of DP thymocytes and a restricted TCRα repertoire. Mechanistically, we showed that p53 was upregulated in both DN and DP YY1-deficient thymocytes. Eliminating p53 in YY1-deficient thymocytes rescued the survival and developmental defects, indicating that these YY1-dependent defects were p53-mediated. We conclude that YY1 is required to maintain cell viability during thymocyte development by thwarting the accumulation of p53.

Overall, this thesis work has shown that CTCF-dependent looping provides a central framework for lineage- and developmental stage-specific regulation of Tcra-Tcrd gene expression and rearrangements. In addition, we identified YY1 as a novel regulator of thymocyte viability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B cells mediate immune responses via the secretion of antibody and interactions with other immune cell populations through antigen presentation, costimulation, and cytokine secretion. Although B cells are primarily believed to promote immune responses using the mechanisms described above, some unique regulatory B cell populations that negatively influence inflammation have also been described. Among these is a rare interleukin (IL)-10-producing B lymphocyte subset termed “B10 cells.” B cell-derived IL-10 can inhibit various arms of the immune system, including polarization of Th1/Th2 cell subsets, antigen presentation and cytokine production by monocytes and macrophages, and activation of regulatory T cells. Further studies in numerous autoimmune and inflammatory models of disease have confirmed the ability of B10 cells to negatively regulate inflammation in an IL-10-dependent manner. Although IL-10 is indispensable to the effector functions of B10 cells, how this specialized B cell population is selected in vivo to produce IL-10 is unknown. Some studies have demonstrated a link between B cell receptor (BCR)-derived signals and the acquisition of IL-10 competence. Additionally, whether antigen-BCR interactions are required for B cell IL-10 production during homeostasis as well as active immune responses is a matter of debate. Therefore, the goal of this thesis is to determine the importance of antigen-driven signals during B10 cell development in vivo and during B10 cell-mediated immunosuppression.

Chapter 3 of the dissertation explored the BCR repertoire of spleen and peritoneal cavity B10 cells using single-cell sequencing to lay the foundation for studies to understand the full range of antigens that may be involved in B10 cell selection. In both the spleen and peritoneal cavity B10 cells studied, BCR gene utilization was diverse, and the expressed BCR transcripts were largely unmutated. Thus, B10 cells are likely capable of responding to a wide range of foreign and self-antigens in vivo.

Studies in Chapter 4 determined the predominant antigens that drive B cell IL-10 secretion during homeostasis. A novel in vitro B cell expansion system was used to isolate B cells actively expressing IL-10 in vivo and probe the reactivities of their secreted monoclonal antibodies. B10 cells were found to produce polyreactive antibodies that bound multiple self-antigens. Therefore, in the absence of overarching active immune responses, B cell IL-10 is secreted following interactions with self-antigens.

Chapter 5 of this dissertation investigated whether foreign antigens are capable of driving B10 cell expansion and effector activity during an active immune response. In a model of contact-induced hypersensitivity, in vitro B cell expansion was again used to isolate antigen-specific B10 clones, which were required for optimal immunosuppression.

The studies described in this dissertation shed light on the relative contributions of BCR-derived signals during B10 cell development and effector function. Furthermore, these investigations demonstrate that B10 cells respond to both foreign and self-antigens, which has important implications for the potential manipulation of B10 cells for human therapy. Therefore, B10 cells represent a polyreactive B cell population that provides antigen-specific regulation of immune responses via the production of IL-10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive use of fossil fuels is leading to increasing CO2 concentrations in the atmosphere and causes changes in the carbonate chemistry of the oceans which represents a major sink for anthropogenic CO2. As a result, the oceans' surface pH is expected to decrease by ca. 0.4 units by the year 2100, a major change with potentially negative consequences for some marine species. Because of their carbonate skeleton, sea urchins and their larval stages are regarded as likely to be one of the more sensitive taxa. In order to investigate sensitivity of pre-feeding (2 days post-fertilization) and feeding (4 and 7 days post-fertilization) pluteus larvae, we raised Strongylocentrotus purpuratus embryos in control (pH 8.1 and pCO2 41 Pa e.g. 399 µatm) and CO2 acidified seawater with pH of 7.7 (pCO2 134 Pa e.g. 1318 µatm) and investigated growth, calcification and survival. At three time points (day 2, day 4 and day 7 post-fertilization), we measured the expression of 26 representative genes important for metabolism, calcification and ion regulation using RT-qPCR. After one week of development, we observed a significant difference in growth. Maximum differences in size were detected at day 4 (ca. 10 % reduction in body length). A comparison of gene expression patterns using PCA and ANOSIM clearly distinguished between the different age groups (Two way ANOSIM: Global R = 1) while acidification effects were less pronounced (Global R = 0.518). Significant differences in gene expression patterns (ANOSIM R = 0.938, SIMPER: 4.3% difference) were also detected at day 4 leading to the hypothesis that differences between CO2 treatments could reflect patterns of expression seen in control experiments of a younger larva and thus a developmental artifact rather than a direct CO2 effect. We found an up regulation of metabolic genes (between 10 to 20% in ATP-synthase, citrate synthase, pyruvate kinase and thiolase at day 4) and down regulation of calcification related genes (between 23 and 36% in msp130, SM30B, SM50 at day 4). Ion regulation was mainly impacted by up regulation of Na+/K+-ATPase at day 4 (15%) and down regulation of NHE3 at day 4 (45%). We conclude that in studies in which a stressor induces an alteration in the speed of development, it is crucial to employ experimental designs with a high time resolution in order to correct for developmental artifacts. This helps prevent misinterpretation of stressor effects on organism physiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unidirectional hybridization between bluegill (Lepomis macrochirus) and pumpkinseed (L. gibbosus) sunfish enables researchers to explore the relative expression of paternal and maternal alleles in hybrids. Past studies have found that the metabolic dysfunction in bluegill-pumpkinseed hybrids may be due to incompatibilities between nuclear and mitochondrial genomes. However, the consequences of hybridization on body size and muscle growth have not been examined. This topic is particularly interesting because hybrids grow larger than parentals despite the fact that they are often sired by smaller, precociously mature bluegills. In order to improve our understanding of growth dynamics in hybrid sunfish, I conducted real-time quantitative PCR using species-specific primers on the white muscle tissue of bluegills, pumpkinseeds, and hybrids collected from Lake Opinicon, ON. Five growth factors that have been linked to muscle growth and body size demonstrated similar expression for maternal and paternal alleles. While about half of the hybrids showed the same pattern with myogenin, about half showed very low levels of mRNA for the paternal (bluegill) gene. While this did not explain the heterosis seen in hybrids, it may explain the small body phenotype of the cuckholding bluegill males. I explored the upstream genetic structure of bluegill myogenin and established that four alleles exist within the population. Furthermore, I uncovered a relationship in hybrids between the proximal promoter/ 5’ UTR of myogenin and its transcript level. I found that the hybrids demonstrating low paternal myogenin expression unfailingly possessed A3 or A4 alleles, but future studies will be needed to reveal the molecular links between the genotype and the growth phenotype. A similar genotype-phenotype association was not obvious in parentals, even those that were homozygous for these alleles. Whether this relationship can provide insight into the genetic determinants of bluegill alternative mating strategies has yet to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DH-JH rearrangements of the Ig heavy-chain gene (IGH) occur early during B-cell development. Consequently, they are detected in precursor-B-cell acute lymphoblastic leukemias both at diagnosis and relapse. Incomplete DJH rearrangements have also been occasionally reported in mature B-cell lymphoproliferative disorders, but their frequency and immunobiological characteristics have not been studied in detail. We have investigated the frequency and characteristics of incomplete DJH as well as complete VDJH rearrangements in a series of 84 untreated multiple myeloma (MM) patients. The overall detection rate of clonality by amplifying VDJH and DJH rearrangements using family-specific primers was 94%. Interestingly, we found a high frequency (60%) of DJH rearrangements in this group. As expected from an immunological point of view, the vast majority of DJH rearrangements (88%) were unmutated. To the best of our knowledge, this is the first systematic study describing the incidence of incomplete DJH rearrangements in a series of unselected MM patients. These results strongly support the use of DJH rearrangements as PCR targets for clonality studies and, particularly, for quantification of minimal residual disease by real-time quantitative PCR using consensus JH probes in MM patients. The finding of hypermutation in a small proportion of incomplete DJH rearrangements (six out of 50) suggests important biological implications concerning the process of somatic hypermutation. Moreover, our data offer a new insight in the regulatory development model of IGH rearrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les cellules endothéliales forment une couche semi-perméable entre le sang et les organes. La prolifération, la migration et la polarisation des cellules endothéliales sont essentielles à la formation de nouveaux vaisseaux à partir de vaisseaux préexistants, soit l’angiogenèse. Le facteur de croissance de l’endothélium vasculaire (VEGF) peut activer la synthase endothéliale du monoxyde d’azote (eNOS) et induire la production de monoxyde d’azote (NO) nécessaire pour la régulation de la perméabilité vasculaire et l’angiogenèse. β- caténine est une composante essentielle du complexe des jonctions d’ancrage ainsi qu’un régulateur majeur de la voie de signalisation de Wnt/β-caténine dans laquelle elle se joint au facteur de transcription TCF/LEF et module l’expression de nombreux gènes, dont certains sont impliqués dans l’angiogenèse. La S-nitrosylation (SNO) est un mécanisme de régulation posttraductionnel des protéines par l’ajout d’un groupement nitroso au niveau de résidus cystéines. Le NO produit par eNOS peut induire la S-nitrosylation de la β−caténine au niveau des jonctions intercellulaires et moduler la perméabilité de l’endothélium. Il a d’ailleurs été montré que le NO peut contrôler l’expression génique par la transcription. Le but de cette thèse est d’établir le rôle du NO au sein de la transcription des cellules endothéliales, spécifiquement au niveau de l’activité de β-caténine. Le premier objectif était de déterminer si la SNO de la β-caténine affecte son activité transcriptionnelle. Nous avons montré que le NO inhibe l’activité transcriptionnelle de β- caténine ainsi que la prolifération des cellules endothéliales induites par l’activation de la voie Wnt/β-caténine. Il est intéressant de constater que le VEGF, qui induit la production de NO via eNOS, réprime l’expression de AXIN2 qui est un gène cible de Wnt s’exprimant suite à la i i stimulation par Wnt3a et ce, dépendamment de eNOS. Nous avons identifié que la cystéine 466 de la β-caténine est un résidu essentiel à la modulation répressive de son activité transcriptionnelle par le NO. Lorsqu’il est nitrosylé, ce résidu est responsable de la perturbation du complexe de transcription formé de β-caténine et TCF-4 ce qui inhibe la prolifération des cellules endothéliales induite par la stimulation par Wnt3a. Puisque le NO affecte la transcription, nous avons réalisé l’analyse du transcriptome afin d’obtenir une vue d’ensemble du rôle du NO dans l’activité transcriptionnelle des cellules endothéliales. L’analyse différentielle de l’expression des gènes de cellules endothéliales montre que la répression de eNOS par siRNA augmente l’expression de gènes impliqués au niveau de la polarisation tels que : PARD3A, PARD3B, PKCZ, CRB1 et TJ3. Cette analyse suggère que le NO peut réguler la polarisation des cellules et a permis d’identifier des gènes responsables de l’intégrité des cellules endothéliales et de la réponse immunitaire. De plus, l’analyse de voies de signalisation par KEGG montre que certains gènes modulés par l’ablation de eNOS sont enrichis dans de nombreuses voies de signalisation, notamment Ras et Notch qui sont importantes lors de la migration cellulaire et la différenciation des cellules de têtes et de tronc (tip/stalk). Le regroupement des gènes exprimés chez les cellules traitées au VEGF (déplétées de eNOS ou non) révèle que le NO peut affecter l’expression de gènes contribuant au processus angiogénique, dont l’attraction chimiotactique. Notre étude montre que le NO module la transcription des cellules endothéliales et régule l’expression des gènes impliqués dans l’angiogenèse et la fonction endothéliale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant reproduction depends on the concerted activation of many genes to ensure correct communication between pollen and pistil. Here, we queried the whole transcriptome of Arabidopsis (Arabidopsis thaliana) in order to identify genes with specific reproductive functions. We used the Affymetrix ATH1 whole genome array to profile wild-type unpollinated pistils and unfertilized ovules. By comparing the expression profile of pistils at 0.5, 3.5, and 8.0 h after pollination and applying a number of statistical and bioinformatics criteria, we found 1,373 genes differentially regulated during pollen-pistil interactions. Robust clustering analysis grouped these genes in 16 time-course clusters representing distinct patterns of regulation. Coregulation within each cluster suggests the presence of distinct genetic pathways, which might be under the control of specific transcriptional regulators. A total of 78% of the regulated genes were expressed initially in unpollinated pistil and/or ovules, 15% were initially detected in the pollen data sets as enriched or preferentially expressed, and 7% were induced upon pollination. Among those, we found a particular enrichment for unknown transcripts predicted to encode secreted proteins or representing signaling and cell wall-related proteins, which may function by remodeling the extracellular matrix or as extracellular signaling molecules. A strict regulatory control in various metabolic pathways suggests that fine-tuning of the biochemical and physiological cellular environment is crucial for reproductive success. Our study provides a unique and detailed temporal and spatial gene expression profile of in vivo pollen-pistil interactions, providing a framework to better understand the basis of the molecular mechanisms operating during the reproductive process in higher plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first topic area of this thesis involved studies on the accumulation and translocation of glucosinolates (GSs), bioactive secondary plant compounds, in broccoli plants. Changes in GS accumulation and gene expression levels in response to exogeneous methyl jasmonate (MeJA) treatment were analyzed in different tissue types at different developmental stages of broccoli. Greater accumulation of GSs with MeJA treatment was observed in apical leaves of broccoli seedlings and florets of plants at harvest maturity. Increases in indolyl GS in apical leaves of seedlings and florets were coupled with the up-regulation of indolyl GS biosynthesis genes. The accumulation of indolyl GSs appears to be modulated by MeJA treatment in an organ-specific manner for optimal distribution of defense substances in the plant. Metabolic profiling of hydrophilic metabolites using GC-MS demonstrated increased accumulation of various phenolics, ascorbates and amino acids in broccoli tissues after MeJA treatment. Distinct changes in carbohydrate levels observed between different tissues (vegetative leaves and floret tissues) of broccoli plants after treatment suggest that carbon metabolism is differentially modulated by MeJA treatment in different tissue types depending on sink-source relationships. Reduced levels of hexose sugars and tricarboxylic acid intermediates after MeJA treatment may reflect the increased requirement for carbon and energy needed to drive secondary product biosynthesis to accumulate metabolites for defense against insects and other herbivores. Substantial increases of indolyl and aromatic GSs after exogenous treatment with MeJA in stem and petioles of seedlings and the existence of intact indolyl-GS forms in phloem exudates suggest enhanced de novo synthesis in combination with active transport. Indoly GSs share structural similarities with the auxin, IAA, and may interact with components of the auxin transport system for intra- and extra-cellular transport or translocation. Application of the auxin efflux inhibitor, 1-naphthylphthalamic acid (NPA) reduced MeJA-mediated accumulation of indolyl GSs in broccoli florets and seedling tissues. NPA did not inhibit expression of indolyl GS biosynthesis genes shown to be upregulated by MeJA treatment or the accumulation of tryptophan, the amino acid precursor of indolyl GSs. Exogenous application of benzyl GS to Arabidopsis roots induced ectopic expression of the PIN1 protein associated with the auxin transport system similar to treatment with NPA, again suggesting GS interaction with the auxin efflux carrier system. The inhibitory effect of NPA on MeJA-mediated accumulation of GS may be due to competitive binding of NPA to auxin efflux carrier components and that GS transport is mediated by the auxin transport system. The inhibitory effect of NPA on indolyl and aromatic GS accumulation and the bioactivity of exogenous treatment of these GS compounds in PIN1 localization, Arabidopsis root growth, and gravitrophic response suggest that indolyl and aromatic GSs may be antagonistic to IAA transport and biosynthesis. Indolyl and aromatic GSs can also be potentially converted into IAA by hydrolysis. This intrinsic feature of GSs may be the part of a sophisticated regulatory process where the metabolic pathways in the plant shift from active growth to a reversible defense posture in response to biotic or abiotic stress. It seems likely that indolyl and aromatic GSs are important compounds that provide connections between jasmonate and auxin signaling. Further studies are required to reveal the regulatory mechanism for crosstalk between the two hormones. The third part of this research was to investigate effect of selenium fertilization and MeJA treatment on accumulation of GSs in broccoli florets. Increasing dietary intake of the element selenium (Se) has been shown to reduce the risk of cancer. Simultaneous enhancement of both Se and GS concentrations in broccoli floret tissue were conducted through the combined treatment of MeJA with Se fertilization. A low level of Se fertilization (concentration) with MeJA treatment displayed no significant changes in total aliphatic GS concentrations with 90% and 50% increases in indolyl and total GSs concentrations, respectively. This result suggests that Se- and GS-enriched broccoli with improved health-promoting properties can be generated by this combined treatment. The second topic of this thesis was conducted to provide basic information required to improve biomass quality and productivity and develop tools for gene transformation in Miscanthus x giganteus. The perennial rhizomatous grass, Miscanthus x giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. x giganteus must be propagated vegetatively by mechanicalling divided rhizomes or from micropropagated plantlets. The effect of callus type, age and culture methods on regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. x giganteus propagation. Seven lignin biosynthesis genes and one putative flowering gene were isolated from M. x giganteus by PCR reactions using maize othologous sequences. Southern hybridization and nuclear DNA content analysis indicated that the genes isolated from M. x giganteus exist in the genome of other Miscanthus species as multiple copies. Analysis of lignin content and histological staining of lignin deposition indicated that higher lignin content is found in mature stem node tissues compared to young leaves and apical stem nodal tissues. Cell wall lignification is associated with increasing tissue maturity in Miscanthus species. RNAi and antisense constructs harboring sequences of these genes were developed to generate Miscanthus transgenic plants with suppressed of lignin biosynthesis and delayed flowering.