983 resultados para galaxies: nuclei
Resumo:
Three distyrylbenzene (DSB) derivatives were vacuum-evaporated on a (001) surface of KBr. DSB derivative molecules formed nuclei by interaction between the electron donative methoxyl group and Br- ion of the substrate crystal and oriented their longitudinal axis obliquely to the substrate surface. The peak shift between the emission peaks of solution and film decreased depending on the number of substituent. This phenomenon was originated to reduction of molecular interaction between neighboring molecules by steric hindrance of end substituents. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The thermal properties of ethylene propylene copolymer-grafted-acrylic acid (EP-g-AA) were investigated by using differential scanning calorimetry (DSC). Compared with the ethylene propylene copolymer (EP), the peak values of the melting temperature (T-m) of the propylene sequences in the grafted EP changed a little, the crystallization temperature (T-c) increased about 8-12 degrees C, and the melting enthalpy (Delta H-m) increased about 4-6 J/g. The isothermal crystallization kinetics of grafted and ungrafted samples was carried out by DSC. Within the scope of the researched crystallization temperature, the Avrami exponent (n) of the ungrafted sample was 1.6-1.8, and that of grafted samples were all above 2, which indicated that the grafted monomer could become the crystal nuclei for the crystallization of propylene sequence. With increasing grafted monomer content, the crystallization rate of propylene sequence in grafted EP increased; it might be the result of rapid nucleation rate and crystal growth rate.
Resumo:
Isothermal crystallization kinetics in the miscible mixtures of poly(epsilon-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) have been investigated as a function of the composition and the crystallization temperature by optical microscopy. The radial growth rates of the spherulites have been described by a kinetic equation including the interaction parameter and the free energy for the formation of secondary crystal nuclei. Fold surface free energies decrease slightly with the increase of SAN content. The experimental findings show that the influence of the glass transition temperature of the mixture, which is related to the chain mobility, on the rate of crystallization predominates over the influence of the surface free energies. This indicates that the glass transition temperature of the mixture should be of more importance, so that the growth rates decrease when the content of the noncrystallizable component increases. In addition, the Flory-Huggins interaction parameter obtained by fitting the kinetic equation with experimental data is questionable.
Resumo:
The stability constants for rare earth complexes with 3,5,3'-triiodothyronine were determined at 37 degrees C end an ionic strength of 0.15 mole/L NaCl. The lanthanide induced shifts were measured for H-1 nuclei of 3,5,3'-triiodothyronine. The coordination of rare earth with 3, 5, 3'-triiodothyronine was discussed.
Resumo:
The overall isothermal crystallization kinetics for neat polypropylene and grafted polypropylene systems were investigated. The rate constants were corrected assuming the heterogeneous nucleation and three dimensional growth of polypropylene spherulites. A semiempirical equation for the radial growth rate of polypropylene spherulites was developed as a function of temperature, and was used to determine the number of effective nuclei of different temperatures. The number of nuclei in grafted samples was estimated to be 10(2)-10(3) times larger than that of neat polypropylene. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Quantitative data on the crystallization kinetics of polymorphic polymers can be derived from the investigation of gross spherulitic morphology formed in isothermal conditions. Depending on distance between centers, and the time lag between their formation and relative growth rates, various types of boundary lines can be generated by the impinging of two spherical bodies whose radii increase linearly with time, In polymorphic polymers, different types of spherulites often develop simultaneously at different rates from sporadic or predetermined nuclei. In same cases, the so-called growth transformation, in which a nucleus of the fast growing specie is formed at the tip of an advancing lamella of the slower crystal form, provides an alternative mode of nucleation, It is shown that if only one event of growth transformation takes place at the front of a slow growing body, the fast growing spherulite swallows the parent one and the resultant shape of interspherulitic boundary is described by two symmetrical logarithmic spirals whose parameters can be extracted from micrographs taken at the end of crystallization. These concepts are applied to determine the radial growth rate of gamma form spherulites of polypivalolactone in a wide range of temperatures through analysis of the alpha/gamma interspherulitic profiles formed in isothermal conditions and direct measurement of the growth rate of the alpha counterparts at the same temperature.
Resumo:
Mossbauer spectra of europium pentaphosphate are measured at various temperatures (126 to 200-degrees-C). Some Mossbauer parameters, such as isomer shift, electric quadrupole splitting, and asymmetry parameter of the EFG at Eu-151 nuclei are derived from the experimental spectra. The lattice parameters of the crystal are determined at several temperatures. The experimental results indicate that the crystal structure of europium pentaphosphate changes from monoclinic to orthorhombic. All of the temperature dependences of the Mossbauer parameters provide evidence of a phase transition of the crystal. The phase transition temperature can be determined from the curve of the asymmetry parameter of EFG versus temperature to 165-degrees-C.
Resumo:
The crystallization kinetics in mixtures of poly(epsilon-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) has been investigated as the function of composition and crystallization temperature. The isothermal growth rates of PCL spherulites decrease with increasing concentration of SAN. Because of the miscibility of PCL/SAN mixtures, the radial growth rates of the spherulites are described by a kinetic equation including the interaction parameter and the free energy for the formation of crystal nuclei. The interaction parameter obtained from the fitting of the kinetic equation with experimental data is in good agreement with that obtained from melting point depression. Folding surface free energies decrease with the increase of SAN concentration. In light of these results, it is suggested that, for the PCL/SAN mixtures, the noncrystallizable SAN polymer reduces the mobility of crystallizable PCL polymer so that the growth rates decrease with the increase of noncrystallizable component fraction.
Resumo:
In this paper lanthanide-induced shifts have been measured for C-13 and H-1 nuclei of glycyl-DL-valine in the presence of three lanthanide cations (La3+, Ho3+ and Yb3+) in aqueous solution. The stability constants of the coordination compounds of rare earths (Ho, Yb) with glycyl-DL-valine have been calculated. The coordination of rare earths with the ligand has been discussed. The simulation for conformation of lanthanide coordination compounds with glycyl-DL-valine shows that the ligand is coordinated to lanthanide ion through oxygen atoms of carboxyl group and the bond length of Ln-O is 0.226 nm. In the coordination compounds glycyl-DL-valine is in extended state with minimal steric hindrance.
Resumo:
Multivariate classification methods were used to evaluate data on the concentrations of eight metals in human senile lenses measured by atomic absorption spectrometry. Principal components analysis and hierarchical clustering separated senile cataract lenses, nuclei from cataract lenses, and normal lenses into three classes on the basis of the eight elements. Stepwise discriminant analysis was applied to give discriminant functions with five selected variables. Results provided by the linear learning machine method were also satisfactory; the k-nearest neighbour method was less useful.
Resumo:
The chloroplasts, mitochondria, and protoplasm devoid of mature chloroplasts (PMC) of Bryopsis hypnoides Lamouroux were isolated by low-speed and sucrose density centrifugation. The PMC aggregated in artificial seawater, and then protoplasts without mature chloroplasts (PtMCs) were formed. Transmission electron microscopy and cytochemical studies indicated that there were mitochondria, nuclei, vesicles, and other small cell organelles in the PtMCs. Scanning electron microscopy showed that there were holes on the surface of 1-h PtMCs and then fewer holes on the surface of 24-h PtMCs, suggesting that a healing process occurred. The plasma membrane was formed over the surface of the PtMCs. However, the cell wall was not regenerated, and the newly formed PtMCs were ruptured and died in 3 days. Light intensity during alga maintenance before use influenced significantly (one-way ANOVA, P < 0.0001) on the number of PtMCs formed; the highest number of PtMCs was formed at 20A mu mol/(m(2) s). When isolated chloroplasts were transferred into seawater, there were only two or three chloroplasts aggregated together. However, isolated mitochondria and the mixed six layers of cell organelles (separated by sucrose density centrifugation) could not aggregate in the artificial seawater. This indicates that the conjunction of cell organelles is important for their aggregation.
Resumo:
The mouse tumor cell 5180 and human liver carcinoma cell SMC 7721 cells were first treated with R-PE and its subunits (alpha, beta, gamma subunits), then irradiated with Argon laser (496 nm, 28.8 J/cm(2)). Survival rate was measured by MTT method. In order to compare the phototoxicity in normal cells, the mouse marrow cells were treated with photofrin II and beta-subunit, irradiated with 45 J/cm(2) of light; survival rate was also measured by MTT method. The result showed that R-PE subunits had better PDT effect on s180 cells than R-PE and lower phototoxicity in marrow cells than photofrin II Flow cytometric analysis showed that PDT results in a growth inhibition and a G(0)-G(1) cell cycle arrest in SMC 7721 cells. The tumor cells inhibited by PDT in vivo were morphologically observed by TEM, the tumor cell death was daze to the occlusion of tumor blood vessels and inducement of cell programmed death in nuclei. Therefore, with the advantage in special fluorescence activity, loth molecular weight, good light absorbent character and weak phototoxicity, R-PE subunit is art attractive option for improving the selectivity of PDT.
Resumo:
Morphology and culture studies on germlings of Sargassum thunbergii (Mertens et Roth) Kuntze were carried out under controlled laboratory conditions. Growth characteristics of these germlings grown under different temperatures (from 10 to 25A degrees C), irradiances (from 9 to 88 mu mol photons m(-2) s(-1)), and under blue and white light conditions are described. The development of embryonic germlings follows the classic "8 nuclei 1 egg" type described for Sargassaceae. Fertilized eggs spent 5-6 h developing into multicellular germlings with abundant rhizoids after fertilization. Under conditions of 20A degrees C, 44 mu mol photons m(-2) s(-1) and photoperiod of 12 h, young germlings with one or two leaflets reached 2-3 mm in length after 8 weeks. Temperature variations (10, 15, 20, 25A degrees C) under 88 mu mol photons m(-2) s(-1) significantly influenced the growth rate within the first week, although this effect became less obvious after 8 weeks, especially at 15 and 20A degrees C. Variation in germling growth was highly significant under different irradiances (9, 18, 44, 88 mu mol photons m(-2) s(-1)) at 25A degrees C. Low temperature (10A degrees C) reduced germling growth. Growth of germlings cultured under blue light was lower than in white light. Optimal growth of these germlings occurred at 25A degrees C and 44 mu mol photons m(-2) s(-1).
Resumo:
Thermal analysis and thermolysis kinetics of three kinds of seaweeds and fir wood (M. glyptostriboides Huet Cheng), a kind of typical land plant, had been conducted. The results showed that thermal stability follows the order of Grateloupia filicina < Ulva lactuca < Dictyopteris divaricata < fir wood. A notable difference on heat flow between seaweeds and fir wood during thermolysis was that the former were mainly connected with exothermic processes at relatively lower temperature regimes. while the latter was connected with an apparent endotherm at a relatively higher temperature regime followed by a maximum exothermic peak. This suggested that the heat coupling might be realized if co-thermolysis of seaweeds and fir wood were carried out. The main devolatilization phase of each seaweed could be described by Avrami-Erofeev equation, which indicated that thermolysis of seaweeds follows the mechanism of random nucleation and nuclei growth, whereas that of fir wood by Z-L-T equation and its thermolysis mechanism was three-dimensional diffusion. The activation energies calculated for both seaweeds and fir wood increase as conversion increases. However, those for the former have wider distribution. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Since 1988 growers of bay scallop Argopecten irradians in China have been experiencing mortality in their cultured stocks. Although poorly documented, mortality apparently began near Qingdao and has since spread to other areas of Shandong and Liaoning provinces. Samples of cultured scallops were collected from several growing areas in these provinces and analyzed by histological methods for pathogens. An unidentified haplosporidian parasite was observed in a high proportion of scallops from two of the stocks examined. Most infections were of low intensity, but one heavy infection was also observed. Only plasmodia stages were observed; they occurred intercellularly in connective tissues throughout the scallops. Plasmodia were spherical to oval, varied from 4.0 to 17.0 mu m in diameter and contained from 2 to 18 nuclei. Absence of spores prevented generic assignment of the parasite. The source and pathogenicity of the haplosporidian could not be assessed without additional research. No other microbial parasites (i.e. rickettsia-like, chlamydia-like or kidney coccidia) were observed in any of the scallops examined.