982 resultados para free text keystroke dynamics
Resumo:
Remote sensing instruments are key players to map land surface temperature (LST) at large temporal and spatial scales. In this paper, we present how we combine passive microwave and thermal infrared data to estimate LST during summer snow-free periods over northern high latitudes. The methodology is based on the SSM/I-SSMIS 37 GHz measurements at both vertical and horizontal polarizations on a 25 km × 25 km grid size. LST is retrieved from brightness temperatures introducing an empirical linear relationship between emissivities at both polarizations as described in Royer and Poirier (2010). This relationship is calibrated at pixel scale, using cloud-free independent LST data from MODIS instruments. The SSM/I-SSMIS and MODIS data are synchronized by fitting a diurnal cycle model built on skin temperature reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The resulting temperature dataset is provided at 25 km scale and at an hourly time step during the ten-year analysis period (2000-2011). This new product was locally evaluated at five experimental sites of the EU-PAGE21 project against air temperature measurements and meteorological model reanalysis, and compared to the MODIS LST product at both local and circumpolar scale. The results giving a mean RMSE of the order of 2.2 K demonstrate the usefulness of the microwave product, which is unaffected by clouds as opposed to thermal infrared products and offers a better resolution compared to model reanalysis.
Resumo:
Plant nonspecific lipid transfer proteins (nsLTPs) bind a wide variety of lipids, which allows them to perform disparate functions. Recent reports on their multifunctionality in plant growth processes have posed new questions on the versatile binding abilities of these proteins. The lack of binding specificity has been customarily explained in qualitative terms on the basis of a supposed structural flexibility and nonspecificity of hydrophobic protein-ligand interactions. We present here a computational study of protein-ligand complexes formed between five nsLTPs and seven lipids bound in two different ways in every receptor protein. After optimizing geometries inmolecular dynamics calculations, we computed Poisson- Boltzmann electrostatic potentials, solvation energies, properties of the protein-ligand interfaces, and estimates of binding free energies of the resulting complexes. Our results provide the first quantitative information on the ligand abilities of nsLTPs, shed new light into protein-lipid interactions, and reveal new features which supplement commonly held assumptions on their lack of binding specificity.
Resumo:
In this paper, we investigate the real demand for climate protection when the purely individual perspective of existing revealed preference studies is relaxed. This is achieved in two treatments; first, we determine the information subjects receive about the demand revealed by other subjects in a similar decision making situation, second, collective action is implemented whereby all subjects are required to purchase the group?s median quantity at a given price. Participants in the experiment were offered the opportunity to contribute to climate protection by purchasing European Union Allowances. Allowances purchased were withdrawn from the European Emissions Trading Scheme. In our experiment, information about other subjects? behaviour has no treatment effect on the demand for climate protection. Under collective action however, the probability of purchasing allowances is higher compared to the reference treatment situation, an individual contribution mechanism. Furthermore, we observe a strong correlation between subjects? demand and their expectations about other participants? behaviour. When collective action is not available, subjects? e xpectations are consistent with free rider behaviour.
Resumo:
A theory is provided for a common experimental set up that is used to measure surface properties in surfactant monolayers. The set up consists of a surfactant monolayer (over a shallow liquid layer) that is compressed/expanded in a periodic fashion by moving in counter-phase two parallel, slightly immersed solid barriers, which vary the free surface area and thus the surfactant concentration. The simplest theory ignores the fluid dynamics in the bulk fluid, assuming spatially uniform surfactant concentration, which requires quite small forcing frequencies and provides reversible dynamics in the compression/expansion cycles. In this paper, we present a long-wave theory for not so slow oscillations that assumes local equilibrium but takes the fluid dynamics into account. This simple theory uncovers the physical mechanisms involved in the surfactant behavior and allows for extracting more information from each experimental run. The conclusion is that the fluid dynamics cannot be ignored, and that some irreversible dynamics could well have a fluid dynamic origin
Resumo:
Bead models are used in dynamical simulation of tethers. These models discretize a cable using beads distributed along its length. The time evolution is obtained nu- merically. Typically the number of particles ranges between 5 and 50, depending on the required accuracy. Sometimes the simulation is extended over long periods (several years). The complex interactions between the cable and its spatial environment require to optimize the propagators —both in runtime and precisión that constitute the central core of the process. The special perturbation method treated on this article conjugates simpleness of computer implementation, speediness and precision, and is capable to propagate the orbit of whichever material particle. The paper describes the evolution of some orbital elements, which are constants in a non-perturbed problem, but which evolve in the time scale imposed by the perturbation. It can be used with any kind of orbit and it is free of sin- gularities related to small inclination and/or small eccentricity. The use of Euler parameters makes it robust.