989 resultados para exposition
Resumo:
Edgard Vare` se’s Poe` me e´ lectronique can be viewed as a bridge between early twentieth-century modernism and electroacoustic music. This connection to early modernism is most clearly seen in its use of musical juxtaposition, a favoured technique of early modernist composers, especially those active in Paris. Juxtaposition and non-motion are considered here, particularly in relationship to Smalley’s exposition of spectromorphology (Smalley 1986), which in its preoccupation with motion omits any significant consideration of non-motion. Juxtaposition and non-motion have an important history within twentieth-century music, and as an early classic of electroacoustic music, Poe` me e´ lectronique is a particularly striking example of a composition that is rich in juxtapositions similar to those found in passages of early modernist music. Examining Poe` me e´ lectronique through the lens of juxtaposition and non-motion reveals how the organisation of its juxtaposed sounds encourages the experience of sound structure suspended time.
Resumo:
This paper addresses the problems often faced by social workers and their supervisors in decision making where human rights considerations and child protection concerns collide. High profile court cases in the United Kingdom and Europe have consistently called for social workers to convey more clarity when justifying their reasons for interfering with human rights in child protection cases. The themes emerging from these case law decisions imply that social workers need to be better at giving reasons and evidence in more explicit ways to support any actions they propose which cause interference with Convention Rights. Toulmin (1958, 1985) offers a structured approach to argumentation which may have relevance to the supervision of child protection cases when social workers and managers are required to balance these human rights considerations. One of the key challenges in this balancing act is the need for decision makers to feel confident that any interventions resulting in the interference of human rights are both justified and proportionate. Toulmin’s work has already been shown to have relevance for assisting social workers navigate pathways through cases involving competing ethical and moral demands (Osmo and Landau, 2001) and more recently to human rights and decision making in child protection (Duffy et al, 2006). Toulmin’s model takes the practitioner through a series of stages where any argument or proposed recommendation (claim) is subjected to intense critical analysis involving exposition of its strengths and weaknesses. The author therefore proposes that explicit argumentation (Osmo and Landau, 2001) may help supervisors and practitioners towards safer and more confident decision making in child protection cases involving the interference of the human rights of children and parents. In addition to highlighting the broader context of human rights currently permeating child protection decision making, the paper will include case material to practically demonstrate the application of Toulmin’s model of argumentation to the supervision context. In this way the paper adopts a strong practice approach in helping to assist practitioners with the problems and dilemmas they may come up against in decision making in complex cases.
Resumo:
In this article, we extend the earlier work of Freeland and McCabe [Journal of time Series Analysis (2004) Vol. 25, pp. 701–722] and develop a general framework for maximum likelihood (ML) analysis of higher-order integer-valued autoregressive processes. Our exposition includes the case where the innovation sequence has a Poisson distribution and the thinning is binomial. A recursive representation of the transition probability of the model is proposed. Based on this transition probability, we derive expressions for the score function and the Fisher information matrix, which form the basis for ML estimation and inference. Similar to the results in Freeland and McCabe (2004), we show that the score function and the Fisher information matrix can be neatly represented as conditional expectations. Using the INAR(2) speci?cation with binomial thinning and Poisson innovations, we examine both the asymptotic e?ciency and ?nite sample properties of the ML estimator in relation to the widely used conditional least
squares (CLS) and Yule–Walker (YW) estimators. We conclude that, if the Poisson assumption can be justi?ed, there are substantial gains to be had from using ML especially when the thinning parameters are large.
Resumo:
We propose a new approach for modeling nonlinear multivariate interest rate processes based on time-varying copulas and reducible stochastic differential equations (SDEs). In the modeling of the marginal processes, we consider a class of nonlinear SDEs that are reducible to Ornstein--Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985) (CIR) process. The reducibility is achieved via a nonlinear transformation function. The main advantage of this approach is that these SDEs can account for nonlinear features, observed in short-term interest rate series, while at the same time leading to exact discretization and closed-form likelihood functions. Although a rich set of specifications may be entertained, our exposition focuses on a couple of nonlinear constant elasticity volatility (CEV) processes, denoted as OU-CEV and CIR-CEV, respectively. These two processes encompass a number of existing models that have closed-form likelihood functions. The transition density, the conditional distribution function, and the steady-state density function are derived in closed form as well as the conditional and unconditional moments for both processes. In order to obtain a more flexible functional form over time, we allow the transformation function to be time varying. Results from our study of U.S. and UK short-term interest rates suggest that the new models outperform existing parametric models with closed-form likelihood functions. We also find the time-varying effects in the transformation functions statistically significant. To examine the joint behavior of interest rate series, we propose flexible nonlinear multivariate models by joining univariate nonlinear processes via appropriate copulas. We study the conditional dependence structure of the two rates using Patton (2006a) time-varying symmetrized Joe--Clayton copula. We find evidence of asymmetric dependence between the two rates, and that the level of dependence is positively related to the level of the two rates. (JEL: C13, C32, G12) Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.
Resumo:
Among the fugues of the WTC II, there are some fugal techniques and procedures that were not explored in the first book. Here, the ‘fugal techniques’ include parallel entries (as used in the fugues in D-sharp minor, G minor and B-flat minor) and double counterpoint at the tenth or twelfth as well as fifteenth (as used in the fugues in G minor and B major). The ‘fugal procedures’, on the other hand, refer to meticulously planned multi-exposition architecture (as seen in the fugues in F-sharp minor exploiting two subsidiary subjects, and B-flat minor exploiting inversion and stretto) and a form in which the appearance of the subsidiary subject is gradually predicted in the fugal discourse (viz. C-sharp minor, G-sharp minor and B major). All these new ideas helped Bach to write more dramatic, more profound fugues for WTC II. The paper will consider how Bach came to acquire the new techniques and to use them in such ways, and what motivated him to adopt these new compositional approaches. Do they offer any clues for our better understanding of why Bach compiled the WTC II?
Resumo:
Modern Multiple-Input Multiple-Output (MIMO) communication systems place huge demands on embedded processing resources in terms of throughput, latency and resource utilization. State-of-the-art MIMO detector algorithms, such as Fixed-Complexity Sphere Decoding (FSD), rely on efficient channel preprocessing involving numerous calculations of the pseudo-inverse of the channel matrix by QR Decomposition (QRD) and ordering. These highly complicated operations can quickly become the critical prerequisite for real-time MIMO detection, exaggerated as the number of antennas in a MIMO detector increases. This paper describes a sorted QR decomposition (SQRD) algorithm extended for FSD, which significantly reduces the complexity and latency
of this preprocessing step and increases the throughput of MIMO detection. It merges the calculations of the QRD and ordering operations to avoid multiple iterations of QRD. Specifically, it shows that SQRD reduces the computational complexity by over 60-70% when compared to conventional
MIMO preprocessing algorithms. In 4x4 to 7x7 MIMO cases, the approach suffers merely 0.16-0.2 dB reduction in Bit Error Rate (BER) performance.
Resumo:
Adaptive Multiple-Input Multiple-Output (MIMO) systems achieve a much higher information rate than conventional fixed schemes due to their ability to adapt their configurations according to the wireless communications environment. However, current adaptive MIMO detection schemes exhibit either low performance (and hence low spectral efficiency) or huge computational
complexity. In particular, whilst deterministic Sphere Decoder (SD) detection schemes are well established for static MIMO systems, exhibiting deterministic parallel structure, low computational complexity and quasi-ML detection performance, there are no corresponding adaptive schemes. This paper solves
this problem, describing a hybrid tree based adaptive modulation detection scheme. Fixed Complexity Sphere Decoding (FSD) and Real-Values FSD (RFSD) are modified and combined into a hybrid scheme exploited at low and medium SNR to provide the highest possible information rate with quasi-ML Bit Error
Rate (BER) performance, while Reduced Complexity RFSD, BChase and Decision Feedback (DFE) schemes are exploited in the high SNR regions. This algorithm provides the facility to balance the detection complexity with BER performance with compatible information rate in dynamic, adaptive MIMO communications
environments.