959 resultados para expert evidence
Resumo:
Cavitation-noise measurements from an axisymmetric body with ‘controlled’ generation of cavitation are reported. The control was achieved by seeding artificial nuclei in the boundary layer by electrolysis. It was possible to alter the number density of nuclei by varying the electrolysis voltage, polarity and the geometry of the electrode. From the observed trend of cavitation-noise data it is postulated that there exists an ‘interference effect’ which influences cavitation noise. When the nucleus-number density is high and cavitation numbers are low this effect is strong. Under these conditions the properties of cavitation noise are found to differ considerably from those expected based on theories concerning noise from single-spherical-bubble cavitation.
Resumo:
Cobalt (11) phthalocyanine (CoPc) molecules have been encapsulated within the supercage of zeolite-Y. The square-planar complex, being larger than the almost spherical cage, is forced to adopt a distorted geometry on encapsulation. A comparative spectroscopic and magnetic investigation of CoPc encapsulated in zeolite-Y and in the unencapsulated state is reported. These results supported by molecular modeling have been used to understand the nature and extent of the loss of planarity of CoPc on encapsulation. The encapsulated molecule is shown to be the trans-diprotonated species in which the center of inversion is lost due to distortions required to accommodate the square complex within the zeolite. Encapsulation also leads to an enhancement of the magnetic moment of the CoPc. This is shown to be a consequence of the nonplanar geometry of the encapsulated molecule resulting in an excited high-spin state being thermally accessible.
Resumo:
The surface wave induced magnetic reconnection (SWIMR) model based on Alfven Resonance theory will be discussed briefly both for collisional and collisionless plasmas. It is shown that the spatial scales and time delays associated with Flux Transfer Events and Pulsed Ionospheric Flows, as observed by satellites and SuperDARN radars and the magnetic bubbles, observed at the high latitude boundary of the magnetopause, can be explained by the SWIMR model.
Resumo:
Despite two decades of extensive research, direct experimental evidence of a dynamical length scale determining the glass transition of confined polymers has yet to emerge. Using a recently established experimental technique of interface micro-rheology we provide evidence of finite-size effect truncating the growth of a quantity proportional to a dynamical length scale in confined glassy polymers, on cooling towards the glass transition temperature. We show how the interplay of variation of polymer film thickness and this temperature-dependent growing dynamical length scale determines the glass transition temperature, which in our case of 2-3nm thick films, is reduced significantly as compared to their bulk values.
Resumo:
Literature of the ancient Chola Dynasty (A.D. 9th-11th centuries) of South India and recent archaeological excavations allude to a sea flood that crippled the ancient port at Kaveripattinam, a trading hub for Southeast Asia, and probably affected the entire South Indian coast, analogous to the 2004 Indian Ocean tsunami impact. We present sedimentary evidence from an archaeological site to validate the textual references to this early medieval event. A sandy layer showing bed forms representing high-energy conditions, possibly generated by a seaborne wave, was identified at the Kaveripattinam coast of Tamil Nadu, South India. Its sedimentary characteristics include hummocky cross-stratification, convolute lamination with heavy minerals, rip-up clasts, an erosional contact with the underlying mud bed, and a landward thinning geometry. Admixed with 1000-year-old Chola period artifacts, it provided an optically stimulated luminescence age of 1091 perpendicular to 66 yr and a thermoluminescence age of 993 perpendicular to 73 yr for the embedded pottery sherds. The dates of these proxies converge around 1000 yr B. P., correlative of an ancient tsunami reported from elsewhere along the Indian Ocean coasts. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Electronic states of CeO(2), Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) , and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) electrodes have been investigated by X-ray photoelectron spectroscopy as a function of applied potential for oxygen evolution and formic acid and methanol oxidation. Ionically dispersed platinum in Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) is active toward these reactions compared with CeO(2) alone. Higher electrocatalytic activity of Pt(2+) ions in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) compared with the same amount of Pt(0) in Pt/C is attributed to Pt(2+) ion interaction with CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) to activate the lattice oxygen of the support oxide. Utilization of this activated lattice oxygen has been demonstrated in terms of high oxygen evolution in acid medium with these catalysts. Further, ionic platinum in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) does not suffer from CO poisoning effect unlike Pt(0) in Pt/C due to participation of activated lattice oxygen which oxidizes the intermediate CO to CO(2). Hence, higher activity is observed toward formic acid and methanol oxidation compared with same amount of Pt metal in Pt/C.
Resumo:
A combined electrochemical method and X-ray photo electron spectroscopy (XPS) has been utilized to understand the Pd(2+)/CeO(2) interaction in Ce(1-x)Pd(x)O(2-delta) (x = 0.02). A constant positive potential (chronoamperometry) is applied to Ce(0.98)Pd(0.02)O(2-delta) working electrode which causes Ce(4+) to reduce to Ce(3+) to the extent of similar to 35%, while Pd remains in the +2 oxidation state. Electrochemically cycling this electrode between 0.0-1.2 V reverts back to the original state of the catalyst. This reversibility is attributed to the reversible reduction of Ce(4+) to Ce(3+) state. CeO(2) electrode with no metal component reduces to CeO(2-y) (y similar to 0.4) after applying 1.2 V which is not reversible and the original composition of CeO(2) cannot be brought back in any electrochemical condition. During the electro-catalytic oxygen evolution reaction at a constant 1.2 V for 1000 s, Ce(0.98)Pd(0.02)O(2-delta) reaches a steady state composition with Pd in the +2 states and Ce(4+) : Ce(3+) in the ratio of 0.65 : 0.35. This composition can be denoted as Ce(0.63)(4+)Ce(0.35)(4+)Pd(0.02)O(2-delta-y) (y similar to 0.17). When pure CeO(2) is put under similar electrochemical condition, it never reaches the steady state composition and reduces almost to 85%. Thus, Ce(0.98)Pd(0.02)O(2-delta) forms a stable electrode for the electro-oxidation of H(2)O to O(2) unlike CeO(2) due to the metal support interaction.
Resumo:
The standard free energies of formation of Zn2Ti04 and ZnTi03 have been determined in the temperature range 930° to i ioo'x from electromotive force measurements on reversible solid oxide galvanic cells;Ag-5at%znll I Pt, + CaO-Zr02 ZnO I II Ag-5at%Zn Y20r Th02 CaO-Zr02 + ,Pt Zn2Ti04+ ZnTi03 and II Ag-5at%Zn CaO-Zr02 + ,Pt ZnTi03+ Ti02 The values may be expressed by the equations,2ZnO (wurtz) + Ti02(rut) -> Zn2Ti04(sp), f:!:.Go = -750-2-46T (±75)cal;ZnO(wurtz) +Ti02(rut) -> ZnTi03(ilmen) ,f:!:.Co = -]600-0·]99T(±50)cal.Combination of the free energy values with the calorimetric heat of formation, and low-temperature and high-temperature heat capacity of Zn2Ti04 reported in literature, suggests a residual entropy of ],9 (±0·6) cal K-1 mol ? for the cubic spinel. Ideal mixing of Zn2+ and Ti4+ ions on the octahedral sites would result in a configurational contribution to the entropy of 2· 75 cal K-1 rnol ".The difference is indicative of short-range ordering of cations on octahedral sites.
Resumo:
We have grown Ga deficient GaN epitaxial films on (0001) sapphire substrate by plasma-assisted molecular beam epitaxy and report the experimental evidence of room temperature ferromagnetic behavior. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm(-1) in Raman spectra confirms the existence of Ga vacancies. The x-ray photoelectron spectroscopic measurements further confirmed the formation of Ga vacancies; since the N/Ga is found to be >1. The ferromagnetism is believed to originate from the polarization of the unpaired 2p electrons of N surrounding the Ga vacancy. (C) 2011 American Institute of Physics. [doi:10.1063/1.3654151]
Resumo:
Grey tracks produced in KTiOPO4 (KTP) by applying a dc electric field have been studied through optical absorption, Raman scattering, and synchrotron x‐ray topography. A study of the optical absorption and Raman scattering from the grey‐tracked region suggests that their formation is accompanied by changes in the electronic levels of Ti4+. There is no evidence for a major structural change or disorder in the grey‐tracked region. However, the x‐ray topographs do indicate the presence of a remnant strain in the lattice, which might contribute to the observed changes in the Raman intensities.
Resumo:
We investigate the vortex behavior of YBa2Cu3O7−δ thin films sandwiched between two ferromagnetic layers (La0.7Sr0.3MnO3/YBa2Cu3O7−δ/La0.7Sr0.3MnO3). The magnetization study on La0.7Sr0.3MnO3/YBa2Cu3O7−δ/La0.7Sr0.3MnO3 trilayers conspicuously shows the presence of both ferromagnetic and diamagnetic phases. The magnetotransport study on the trilayers reveals a significant reduction in the activation energy (U) for the vortex motion in YBa2Cu3O7−δ. Besides, the “U” exhibits a logarithmic dependence on the applied magnetic field which directly indicates the existence of decoupled two-dimensional (2D) pancake vortices present in the CuO2 layers. The evidence of 2D decoupled vortex behavior in La0.7Sr0.3MnO3/YBa2Cu3O7−δ/La0.7Sr0.3MnO3 is believed to arise from (a) the weakening of superconducting coherence length along the c-axis and (b) enhanced intraplane vortex–vortex interaction due to the presence of ferromagnetic layers.
Resumo:
Experiments on Ge15Te85− x Si x glasses (2 ≤ x ≤ 12) using alternating differential scanning calorimetry (ADSC) indicate that these glasses exhibit one glass transition and two crystallization reactions upon heating. The glass transition temperature has been found to increase almost linearly with silicon content, in the entire composition tie-line. The first crystallization temperature (T c1) exhibits an increase with silicon content for x < 5; T c1 remains almost a constant in the composition range 5 < x ≤ 10 and it increases comparatively more sharply with silicon content thereafter. The specific heat change (ΔC p) is found to decrease with an increase in silicon content, exhibiting a minimum at x = 5 (average coordination number, r = 2.4); a continuous increase is seen in ΔC p with silicon concentration above x = 5. The effects seen in the variation with composition of T c1 and ΔC p at x = 5, are the specific signatures of the mean-field stiffness threshold at r = 2.4. Furthermore, a broad trough is seen in the enthalpy change (ΔH NR), which is indicative of a thermally reversing window in Ge15Te85− x Si x glasses in the composition range 2 ≤ x ≤ 6 (2.34 ≤ r ≤ 2.42).