942 resultados para experimental models
Resumo:
Bargaining is the building block of many economic interactions, ranging from bilateral to multilateral encounters and from situations in which the actors are individuals to negotiations between firms or countries. In all these settings, economists have been intrigued for a long time by the fact that some projects, trades or agreements are not realized even though they are mutually beneficial. On the one hand, this has been explained by incomplete information. A firm may not be willing to offer a wage that is acceptable to a qualified worker, because it knows that there are also unqualified workers and cannot distinguish between the two types. This phenomenon is known as adverse selection. On the other hand, it has been argued that even with complete information, the presence of externalities may impede efficient outcomes. To see this, consider the example of climate change. If a subset of countries agrees to curb emissions, non-participant regions benefit from the signatories’ efforts without incurring costs. These free riding opportunities give rise to incentives to strategically improve ones bargaining power that work against the formation of a global agreement. This thesis is concerned with extending our understanding of both factors, adverse selection and externalities. The findings are based on empirical evidence from original laboratory experiments as well as game theoretic modeling. On a very general note, it is demonstrated that the institutions through which agents interact matter to a large extent. Insights are provided about which institutions we should expect to perform better than others, at least in terms of aggregate welfare. Chapters 1 and 2 focus on the problem of adverse selection. Effective operation of markets and other institutions often depends on good information transmission properties. In terms of the example introduced above, a firm is only willing to offer high wages if it receives enough positive signals about the worker’s quality during the application and wage bargaining process. In Chapter 1, it will be shown that repeated interaction coupled with time costs facilitates information transmission. By making the wage bargaining process costly for the worker, the firm is able to obtain more accurate information about the worker’s type. The cost could be pure time cost from delaying agreement or cost of effort arising from a multi-step interviewing process. In Chapter 2, I abstract from time cost and show that communication can play a similar role. The simple fact that a worker states to be of high quality may be informative. In Chapter 3, the focus is on a different source of inefficiency. Agents strive for bargaining power and thus may be motivated by incentives that are at odds with the socially efficient outcome. I have already mentioned the example of climate change. Other examples are coalitions within committees that are formed to secure voting power to block outcomes or groups that commit to different technological standards although a single standard would be optimal (e.g. the format war between HD and BlueRay). It will be shown that such inefficiencies are directly linked to the presence of externalities and a certain degree of irreversibility in actions. I now discuss the three articles in more detail. In Chapter 1, Olivier Bochet and I study a simple bilateral bargaining institution that eliminates trade failures arising from incomplete information. In this setting, a buyer makes offers to a seller in order to acquire a good. Whenever an offer is rejected by the seller, the buyer may submit a further offer. Bargaining is costly, because both parties suffer a (small) time cost after any rejection. The difficulties arise, because the good can be of low or high quality and the quality of the good is only known to the seller. Indeed, without the possibility to make repeated offers, it is too risky for the buyer to offer prices that allow for trade of high quality goods. When allowing for repeated offers, however, at equilibrium both types of goods trade with probability one. We provide an experimental test of these predictions. Buyers gather information about sellers using specific price offers and rates of trade are high, much as the model’s qualitative predictions. We also observe a persistent over-delay before trade occurs, and this mitigates efficiency substantially. Possible channels for over-delay are identified in the form of two behavioral assumptions missing from the standard model, loss aversion (buyers) and haggling (sellers), which reconcile the data with the theoretical predictions. Chapter 2 also studies adverse selection, but interaction between buyers and sellers now takes place within a market rather than isolated pairs. Remarkably, in a market it suffices to let agents communicate in a very simple manner to mitigate trade failures. The key insight is that better informed agents (sellers) are willing to truthfully reveal their private information, because by doing so they are able to reduce search frictions and attract more buyers. Behavior observed in the experimental sessions closely follows the theoretical predictions. As a consequence, costless and non-binding communication (cheap talk) significantly raises rates of trade and welfare. Previous experiments have documented that cheap talk alleviates inefficiencies due to asymmetric information. These findings are explained by pro-social preferences and lie aversion. I use appropriate control treatments to show that such consideration play only a minor role in our market. Instead, the experiment highlights the ability to organize markets as a new channel through which communication can facilitate trade in the presence of private information. In Chapter 3, I theoretically explore coalition formation via multilateral bargaining under complete information. The environment studied is extremely rich in the sense that the model allows for all kinds of externalities. This is achieved by using so-called partition functions, which pin down a coalitional worth for each possible coalition in each possible coalition structure. It is found that although binding agreements can be written, efficiency is not guaranteed, because the negotiation process is inherently non-cooperative. The prospects of cooperation are shown to crucially depend on i) the degree to which players can renegotiate and gradually build up agreements and ii) the absence of a certain type of externalities that can loosely be described as incentives to free ride. Moreover, the willingness to concede bargaining power is identified as a novel reason for gradualism. Another key contribution of the study is that it identifies a strong connection between the Core, one of the most important concepts in cooperative game theory, and the set of environments for which efficiency is attained even without renegotiation.
Resumo:
Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single pro-inflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could well be explained by the widespread gene expression dysregulation known as "genomic storm" in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this "storm". Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some pro-inflammatory molecules, complement components and endogenous "danger" signals. The improved survival in endotoxemia was associated with serum levels of pro-inflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.
Resumo:
Vestibular cognition has recently gained attention. Despite numerous experimental and clinical demonstrations, it is not yet clear what vestibular cognition really is. For future research in vestibular cognition, adopting a computational approach will make it easier to explore the underlying mech- anisms. Indeed, most modeling approaches in vestibular science include a top-down or a priori component. We review recent Bayesian optimal observer models, and discuss in detail the conceptual value of prior assumptions, likelihood and posterior estimates for research in vestibular cognition. We then consider forward models in vestibular processing, which are required in order to distinguish between sensory input that is induced by active self-motion, and sensory input that is due to passive self-motion. We suggest that forward models are used not only in the service of estimating sensory states but they can also be drawn upon in an offline mode (e.g., spatial perspective transformations), in which interaction with sensory input is not desired. A computational approach to vestibular cogni- tion will help to discover connections across studies, and it will provide a more coherent framework for investigating vestibular cognition.
Resumo:
Monoclonal antibodies (mAbs) inhibiting cytokines have recently emerged as new drug modalities for the treatment of chronic inflammatory diseases. Interleukin-17 (IL-17) is a T-cell-derived central mediator of autoimmunity. Immunization with Qβ-IL-17, a virus-like particle based vaccine, has been shown to produce autoantibodies in mice and was effective in ameliorating disease symptoms in animal models of autoimmunity. To characterize autoantibodies induced by vaccination at the molecular level, we generated mouse mAbs specific for IL-17 and compared them to germline Ig sequences. The variable regions of a selected hypermutated high-affinity anti-IL-17 antibody differed in only three amino acid residues compared to the likely germline progenitor. An antibody, which was backmutated to germline, maintained a surprisingly high affinity (0.5 nM). The ability of the parental hypermutated antibody and the derived germline antibody to block inflammation was subsequently tested in murine models of multiple sclerosis (experimental autoimmune encephalomyelitis), arthritis (collagen-induced arthritis), and psoriasis (imiquimod-induced skin inflammation). Both antibodies were able to delay disease onset and significantly reduced disease severity. Thus, the mouse genome unexpectedly encodes for antibodies with the ability to functionally neutralize IL-17 in vivo.
Resumo:
Pregnant BALB/c mice have been widely used as an in vivo model to study Neospora caninum infection biology and to provide proof-of-concept for assessments of drugs and vaccines against neosporosis. The fact that this model has been used with different isolates of variable virulence, varying infection routes and differing methods to prepare the parasites for infection, has rendered the comparison of results from different laboratories impossible. In most studies, mice were infected with similar number of parasites (2 × 10(6)) as employed in ruminant models (10(7) for cows and 10(6) for sheep), which seems inappropriate considering the enormous differences in the weight of these species. Thus, for achieving meaningful results in vaccination and drug efficacy experiments, a refinement and standardization of this experimental model is necessary. Thus, 2 × 10(6), 10(5), 10(4), 10(3) and 10(2) tachyzoites of the highly virulent and well-characterised Nc-Spain7 isolate were subcutaneously inoculated into mice at day 7 of pregnancy, and clinical outcome, vertical transmission, parasite burden and antibody responses were compared. Dams from all infected groups presented nervous signs and the percentage of surviving pups at day 30 postpartum was surprisingly low (24%) in mice infected with only 10(2) tachyzoites. Importantly, infection with 10(5) tachyzoites resulted in antibody levels, cerebral parasite burden in dams and 100% mortality rate in pups, which was identical to infection with 2 × 10(6) tachyzoites. Considering these results, it is reasonable to lower the challenge dose to 10(5) tachyzoites in further experiments when assessing drugs or vaccine candidates.
Resumo:
The goal of the present thesis was to investigate the production of code-switched utterances in bilinguals’ speech production. This study investigates the availability of grammatical-category information during bilingual language processing. The specific aim is to examine the processes involved in the production of Persian-English bilingual compound verbs (BCVs). A bilingual compound verb is formed when the nominal constituent of a compound verb is replaced by an item from the other language. In the present cases of BCVs the nominal constituents are replaced by a verb from the other language. The main question addressed is how a lexical element corresponding to a verb node can be placed in a slot that corresponds to a noun lemma. This study also investigates how the production of BCVs might be captured within a model of BCVs and how such a model may be integrated within incremental network models of speech production. In the present study, both naturalistic and experimental data were used to investigate the processes involved in the production of BCVs. In the first part of the present study, I collected 2298 minutes of a popular Iranian TV program and found 962 code-switched utterances. In 83 (8%) of the switched cases, insertions occurred within the Persian compound verb structure, hence, resulting in BCVs. As to the second part of my work, a picture-word interference experiment was conducted. This study addressed whether in the case of the production of Persian-English BCVs, English verbs compete with the corresponding Persian compound verbs as a whole, or whether English verbs compete with the nominal constituents of Persian compound verbs only. Persian-English bilinguals named pictures depicting actions in 4 conditions in Persian (L1). In condition 1, participants named pictures of action using the whole Persian compound verb in the context of its English equivalent distractor verb. In condition 2, only the nominal constituent was produced in the presence of the light verb of the target Persian compound verb and in the context of a semantically closely related English distractor verb. In condition 3, the whole Persian compound verb was produced in the context of a semantically unrelated English distractor verb. In condition 4, only the nominal constituent was produced in the presence of the light verb of the target Persian compound verb and in the context of a semantically unrelated English distractor verb. The main effect of linguistic unit was significant by participants and items. Naming latencies were longer in the nominal linguistic unit compared to the compound verb (CV) linguistic unit. That is, participants were slower to produce the nominal constituent of compound verbs in the context of a semantically closely related English distractor verb compared to producing the whole compound verbs in the context of a semantically closely related English distractor verb. The three-way interaction between version of the experiment (CV and nominal versions), linguistic unit (nominal and CV linguistic units), and relation (semantically related and unrelated distractor words) was significant by participants. In both versions, naming latencies were longer in the semantically related nominal linguistic unit compared to the response latencies in the semantically related CV linguistic unit. In both versions, naming latencies were longer in the semantically related nominal linguistic unit compared to response latencies in the semantically unrelated nominal linguistic unit. Both the analysis of the naturalistic data and the results of the experiment revealed that in the case of the production of the nominal constituent of BCVs, a verb from the other language may compete with a noun from the base language, suggesting that grammatical category does not necessarily provide a constraint on lexical access during the production of the nominal constituent of BCVs. There was a minimal context in condition 2 (the nominal linguistic unit) in which the nominal constituent was produced in the presence of its corresponding light verb. The results suggest that generating words within a context may not guarantee that the effect of grammatical class becomes available. A model is proposed in order to characterize the processes involved in the production of BCVs. Implications for models of bilingual language production are discussed.
Resumo:
Increasing amounts of data is collected in most areas of research and application. The degree to which this data can be accessed, analyzed, and retrieved, is a decisive in obtaining progress in fields such as scientific research or industrial production. We present a novel methodology supporting content-based retrieval and exploratory search in repositories of multivariate research data. In particular, our methods are able to describe two-dimensional functional dependencies in research data, e.g. the relationship between ination and unemployment in economics. Our basic idea is to use feature vectors based on the goodness-of-fit of a set of regression models to describe the data mathematically. We denote this approach Regressional Features and use it for content-based search and, since our approach motivates an intuitive definition of interestingness, for exploring the most interesting data. We apply our method on considerable real-world research datasets, showing the usefulness of our approach for user-centered access to research data in a Digital Library system.
Resumo:
Los polímeros armados con fibras (FRP) se utilizan en refuerzos de estructuras de hormigón debido sobre todo a sus excelentes propiedades mecánicas, su resistencia a la corrosión y a su ligereza que se traduce en facilidad y ahorro en el transporte, puesta en obra y aplicación, la cual se realiza de forma muy rápida, con pocos operarios y utilizando medios auxiliares ligeros, minimizándose las interrupciones del uso de la estructura y las molestias a los usuarios. Las razones presentadas anteriormente, han despertado un gran inter´es por parte de diferentes grupos de investigación a nivel mundial y que actualmente se encuentran desarrollando nuevas técnicas de aplicación y métodos de cálculo. Sin embargo, las investigaciones realizadas hasta la fecha, muestran un procedimiento bien definido y aceptado en lo referente al cálculo a flexión, lo cual no ocurre con el refuerzo a cortante y aunque se ha demostrado que el refuerzo con FRP es un sistema eficaz para incrementar la capacidad ´ultima frente a esfuerzos cortantes, también se pone de manifiesto la necesidad de más estudios experimentales y teóricos para avanzar en el entendimiento de los mecanismos involucrados para este tipo de refuerzo y establecer un procedimiento de diseño apropiado que maximice las excelentes propiedades de este material. Los modelos que explican el comportamiento del refuerzo a cortante de elementos de hormigón armado son complejos y sin transposición directa a fórmulas ingenieriles. Las normas actualmente en vigor, generalmente, establecen empíricamente la capacidad cortante como la suma de las capacidades del hormigón y el refuerzo transversal de acero. Cuando un elemento es reforzado externamente con FRP, los modelos son evidentemente aun más complejos. Las guías y recomendaciones existentes proponen calcular la capacidad del elemento añadiendo la resistencia aportada por el refuerzo externo de FRP a la ya dada por el hormigón y acero transversal. Sin embargo, la idoneidad de este acercamiento es cuestionable puesto que no tiene en cuenta una posible interacción entre refuerzos. Con base en lo anterior se da origen al tema objeto de este trabajo, el cual está orientado al estudio a cortante de elementos de hormigón armado (HA), reforzados externamente con material compuesto de tejido unidireccional de fibra de carbono y resina epoxi. Inicialmente se hace una completa revisión del estado actual del conocimiento de la resistencia a cortante en elementos de hormigón armado con y sin refuerzo externo de FRP, prestando especial atención en los mecanismos actuantes estudiados hasta la fecha. La bibliografía consultada ha sido exhaustiva y actualizada lo que ha permitido el estudio de los modelos propuestos más importantes, tanto para la descripción del fenómeno de adherencia entre hormigón-FRP como de la valoración del aporte al cortante total hecho por el FRP, a través de sendas bases de datos de ensayos de pull-out y de vigas de hormigón armado ensayadas a cortante. Con base en todo lo anterior, se expusieron los mecanismos actuantes en el aporte a cortante hecho por el FRP en elementos de hormigón armado y la forma como las principales guías de cálculo existentes hasta la fecha los abordan. De igual forma se define un modelo de resistencia de esfuerzos para el FRP y se proponen dos modelos para el cálculo de las tensiones o deformaciones efectivas, de los cuales uno esta basado en el modelo de adherencia propuesto por Oller (2005) y el otro en una regresión multivariante para los mecanismos expuestos. Como complemento del estudio de los trabajos encontrados en la literatura, se lleva acabo un programa experimental que, además de aportar más registros a la exigua base de datos existentes, aporte mayor luz a los puntos que se consideran están deficientemente resueltos. Dentro de este programa se realizaron 32 ensayos sobre 16 vigas de 4.5 m de longitud (dos ensayos por viga), reforzadas a cortante con tejido unidireccional de CFRP. Finalmente, estos estudios han permitido proponer modificaciones a las formulaciones existentes en los códigos y guías en vigor. Abstract Its excellent mechanical properties, as well as its corrosion resistance and light weight, which make it easy to apply and inexpensive to ship to the worksite, are the basis of the extended use of fiber reinforced polymer (FRP) as external strengthening for structures. FRP strengthening is a rapid operation calling for only limited labor and lightweight ancillary equipment, all of which minimizes both the interruption of facility usage and user inconvenience. These advantages have aroused considerable interest in civil engineering science and technology and have led to countless applications the world over. Research studies on the shear strength of FRP-strengthened members have been much fewer in number and more controversial than the research on flexural strengthening, for which a more or less standardized and generally accepted procedure has been established. The research conducted and a host of applications around the world have shown that FRP strengthening is an effective technique for raising ultimate shear strength, but it has also revealed a need for further experimental and theoretical research to advance in the understanding of the mechanisms involved and establish suitable design procedures that optimize the excellent properties of this material The models that explain reinforced concrete (RC) shear strength behavior are complex and cannot be directly transposed to engineering formulas. The standards presently in place generally establish shear capacity empirically as the sum of the capacities of the concrete and the passive reinforcement. When members are externally strengthened with FRP, the models are obviously even more complex. The existing guides and recommendations propose calculating capacity by adding the external strength provided by the FRP to the contributions of the concrete and passive reinforcement. The suitability of this approach is questionable, however, because it fails to consider the interaction between passive reinforcement and external strengthening. The subject of this work is based in above, which is focused on externally shear strengthening for reinforced concrete members with unidirectional carbon fiber sheets bonded with epoxy resin. v Initially a thorough literature review on shear of reinforced concrete beams with and without external FRP strengthening was performed, paying special attention to the acting mechanisms studied to date, which allowed the study of the most important models both to describe the bond phenomenon as well as calculating the FRP shear contribution, through separate databases of pull-out tests and shear tests on reinforced concrete beams externally strengthened with FRP. Based on above, they were exposed the acting mechanisms in a FRP shear strengthening on reinforced concrete beams and how guidelines deal the topic. The same way, it is defined a FRP stress strength model and two more models are proposed for calculating the effective stress, one of these is based on the Oller (2005) bond model and another one is the data best fit, taking into account most of the acting mechanisms. To complement the theoretical part we develop an experimental program that, in addition to providing more records to the meager existing database provide greater understanding to the points considered poorly resolved. The test program included 32 tests of 16 beams (2 per beam) of 4.5 m long, shear strengthened with FRP, externally. Finally, modifications to the existing codes and guidelines are proposed.
Resumo:
Ozone stomatal fluxes were modeled for a 3-year period following different approaches for a commercial variety of durum wheat (Triticum durum Desf. cv. Camacho) at the phenological stage of anthesis. All models performed in the same range, although not all of them afforded equally significant results. Nevertheless, all of them suggest that stomatal conductance would account for the main percentage of ozone deposition fluxes. A new modeling approach was tested, based on a 3-D architectural model of the wheat canopy, and fairly accurate results were obtained. Plant species-specific measurements, as well as measurements of stomatal conductance and environmental parameters, were required. The method proposed for calculating ozone stomatal fluxes (FO(3_3-D)) from experimental gs data and modeling them as a function of certain environmental parameters in conjunction with the use of the YPLANT model seems to be adequate, providing realistic estimates of the canopy FO(3_3-D), integrating and not neglecting the contribution of the lower leaves with respect to the flag leaf, although a further development of this model is needed.
Resumo:
The consideration of real operating conditions for the design and optimization of a multijunction solar cell receiver-concentrator assembly is indispensable. Such a requirement involves the need for suitable modeling and simulation tools in order to complement the experimental work and circumvent its well-known burdens and restrictions. Three-dimensional distributed models have been demonstrated in the past to be a powerful choice for the analysis of distributed phenomena in single- and dual-junction solar cells, as well as for the design of strategies to minimize the solar cell losses when operating under high concentrations. In this paper, we present the application of these models for the analysis of triple-junction solar cells under real operating conditions. The impact of different chromatic aberration profiles on the short-circuit current of triple-junction solar cells is analyzed in detail using the developed distributed model. Current spreading conditions the impact of a given chromatic aberration profile on the solar cell I-V curve. The focus is put on determining the role of current spreading in the connection between photocurrent profile, subcell voltage and current, and semiconductor layers sheet resistance.
Resumo:
Many of the material models most frequently used for the numerical simulation of the behavior of concrete when subjected to high strain rates have been originally developed for the simulation of ballistic impact. Therefore, they are plasticity-based models in which the compressive behavior is modeled in a complex way, while their tensile failure criterion is of a rather simpler nature. As concrete elements usually fail in tensión when subjected to blast loading, available concrete material models for high strain rates may not represent accurately their real behavior. In this research work an experimental program of reinforced concrete fíat elements subjected to blast load is presented. Altogether four detonation tests are conducted, in which 12 slabs of two different concrete types are subjected to the same blast load. The results of the experimental program are then used for the development and adjustment of numerical tools needed in the modeling of concrete elements subjected to blast.