949 resultados para epoxy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epoxy based nanocomposites with 1 wt % and 3 wt % of nanographite were processed by high shear mixing. The nanographite was obtained by chemical (acid intercalation), thermal (microwave expansion) and mechanical (ultrasonic exfoliation) treatments. The mechanical, electrical and thermal behavior of the nanocomposites was determined and evaluated as a function of the percentage of reinforcement. According to the experimental results, the electrical conductivity of epoxy was not altered by the addition of nanographite in the contents evaluated. However, based on the mechanical tests, nanocomposites with addition of 1 wt.% and 3 wt.% of nanographite showed increase in tensile strength of 16,62 % and 3,20 %, respectively, compared to the neat polymer. The smaller increase in mechanical strength of the nanocomposite with 3 wt.% of nanographite was related to the formation of agglomerates. The addition of 1 wt.% and 3 wt.% of nanographite also resulted in a decrease of 6,25 % and 17,60 %, respectively, in the relative density of the material. Thus, the specific strength of the nanocomposites was approximately 33,33 % greater when compared to the neat polymer. The addition of 1 wt.% and 3 wt.% of nanographite in the material increased the mean values of thermal conductivity in 28,33 % and 132,62 %, respectively, combined with a reduction of 26,11 % and 49,80 % in volumetric thermal capacity, respectively. In summary, it has been determined that an addition of nanographite of the order of 1 wt.% and 3 wt.% produced notable elevations in specific strength and thermal conductivity of epoxy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite laminates with plies in different directions finely dispersed are classified as homogenized. The expected benefits of homogenization include increased mechanical strength, toughness and resistance to delamination. The objective of this study was to evaluate the effect of stacking sequence on the tensile strength of laminates. Composite plates were fabricated using unidirectional layers of carbon/epoxy prepreg with configurations [903/303/-303]S and [90/30/-30]3S. Specimens were subjected to tensile and open hole tension (OHT) tests. According to the experimental results, the mean values of strength for the homogenized laminates [90/30/-30]3S were 140% and 120% greater for tensile and OHT tests, respectively, as compared to laminates with configuration [903/303/-303]S. The increase in tensile strength for more homogenized laminates was associated with the increment in interlaminar interfaces, which requires more energy to produce delamination, and the more complicated crack propagation through plies with different orientations. OHT strength was not affected by the presence of the hole due to the predominance of the interlaminar shear stress in relation to the stress concentration produced by the hole

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As most current studies, reinforced plastics have been, in recent years, a viable alternative in building structural elements of medium and large, since the lightness accompanied by high performance possible. The design of hybrid polymer composites (combination of different types of reinforcements) may enable structural applications thereof, facing the most severe service conditions. Within this class of composite materials, reinforced the underlying tissues hybrid high performance are taking space when your application requires high load bearing and high rigidity. The objective of this research work is to study the challenges in designing these fabrics bring these materials as to its mechanical characterization and fracture mechanisms involved. Some parameters associated with the process and / or form of hybridization stand out as influential factors in the final performance of the material such as the presence of anisotropy, so the fabric weave, the process of making the same, normative geometry of the specimens, among others. This sense, four laminates were developed based hybrid reinforcement fabrics involving AS4 carbon fiber, kevlar and glass 49-E as the matrix epoxy vinyl ester resin (DERAKANE 411-350). All laminates were formed each with four layers of reinforcements. Depending on the hybrid fabric, all the influencing factors mentioned above have been studied for laminates. All laminates were manufactured industrially used being the lamination process manual (hand-lay-up). All mechanical characterization and study of the mechanism of fracture (fracture mechanics) was developed for laminates subjected to uniaxial tensile test, bending in three and uniaxial compression. The analysis of fracture mechanisms were held involving the macroscopic, optical microscopy and scanning electron microscopy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linoleic acid (LA) is a major constituent of low-density lipoproteins. An essential fatty acid, LA is a polyunsaturated fatty acid, which is oxidised by endogenous enzymes and reactive oxygen species in the circulation. Increased levels of low-density lipoproteins coupled with oxidative stress and lack of antioxidants drive the oxidative processes. This results in synthesis of a range of oxidised derivatives, which play a vital role in regulation of inflammatory processes. The derivatives of LA include, hydroxyoctadecadienoic acids, oxo-​octadecadienoic acids, epoxy octadecadecenoic acid and epoxy-keto-octadecenoic acids. In this review, we examine the role of LA derivatives and their actions on regulation of inflammation relevant to metabolic processes associated with atherogenesis and cancer. The processes affected by LA derivatives include, alteration of airway smooth muscles and vascular wall, affecting sensitivity to pain, and regulating endogenous steroid hormones associated with metabolic syndrome. LA derivatives alter cell adhesion molecules, this initial step, is pivotal in regulating inflammatory processes involving transcription factor peroxisome proliferator-activated receptor pathways, thus, leading to alteration of metabolic processes. The derivatives are known to elicit pleiotropic effects that are either beneficial or detrimental in nature hence making it difficult to determine the exact role of these derivatives in the progress of an assumed target disorder. The key may lie in understanding the role of these derivatives at various stages of development of a disorder. Novel pharmacological approaches in altering the synthesis or introduction of synthesised LA derivatives could possibly help drive processes that could regulate inflammation in a beneficial manner. Chemical Compounds: Linoleic acid (PubChem CID: 5280450), 9- hydroxyoctadecadienoic acid (PubChem CID: 5312830), 13- hydroxyoctadecadienoic acid (PubChem CID: 6443013), 9-oxo-​octadecadienoic acid (PubChem CID: 3083831), 13-oxo-​octadecadienoic acid (PubChem CID: 4163990), 9,10-epoxy-12-octadecenoate (PubChem CID: 5283018), 12,13-epoxy-9-keto-10- trans -octadecenoic acid (PubChem CID: 53394018), Pioglitazone (PubChem CID: 4829).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An enhanced mandrel bend testing method has been proposed for the evaluation of the maximum strain level that could be tolerated by an organic coating, and for the understanding of localised coating deformation and cracking behaviours under nonuniform mechanical strains. The aim is to develop a practical method that is suitable for selecting pipeline coatings in order to ensure that the selected coatings have sufficient flexibility to meet the high strain demand during the construction, hydrostatic testing and operation of high pressure pipelines. Two new mandrel bend testing setups have been designed by employing either centre or end clamps in order to improve the uniformity of strain distributions over coated steel coupons, and by using strain gauges to perform in situ measurements of local strains. A series of tests have been carried out to evaluate the new method for testing the flexibility of selected epoxy based pipeline industry coatings. Preliminary computational simulation has also been carried out for assisting the interpretation of mandrel bending test results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new route to prepare nanostructured thermosets by the utilization of intermolecular hydrogen-bonding interactions is demonstrated here. In this study, competitive hydrogen-bonding-induced microphase separation (CHIPS) in epoxy resin (ER) containing an amphiphilic block copolymer poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) is investigated for the first time. The phase separation takes place due to the disparity in the hydrogen-bonding interactions in ER/P2VP and ER/PCL pairs leading to the formation of ordered nanostructures in the ER/block copolymer blends. SAXS and TEM results indicate that the hexagonally packed cylindrical morphology of neat PCL-b-P2VP block copolymer remains but becomes a core-shell structure at 10 wt % addition of ER, and changes to regular lamellae structures at 20-50 wt % then to disordered lamellae with 60 wt % ER. Wormlike structures are obtained in the blends with 70 wt % ER, followed by a completely homogeneous phase of ER/P2VP and ER/PCL. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen-bonding interactions between each component block copolymer and the homopolymer. This versatile method to develop nanostructured thermosets, involving competitive hydrogen-bonding interactions, could be used for the fabrication of hierarchical and functional materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of amphiphilic poly(ethylene glycol)-block-poly(bisphenol A carbonate) (PEG-b-PC) block copolymer is presented here using a simple bio-chemistry coupling reaction between poly(bisphenol A carbonate) (PC) with a monomethylether poly(ethylene glycol) (mPEG-OH) block, mediated by dicyclohexylcarbodiimide/4-dimethylaminopyridine. This method inherently allows great flexibility in the choice of starting materials as well as easy product purification only requiring phase separation and water washing. Collective data from Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and modulated dynamic scanning calorimetry (MDSC) confirmed the successful attachment of the poly(ethylene glycol) (mPEG-OH) and poly(bisphenol A carbonate) (PC) blocks. The preparation of nano-capsules was carried out by sudden addition of water to PEG-b-PC copolymers dispersed in THF, resulting in the controlled precipitation (i.e. thermodynamic entrapment) of the copolymer. Nano-capsules as small as 85 nm ± 30 nm were produced using this simple and fast methodology. We also demonstrate that encapsulating a water-insoluble bisphenol A diglycidyl ether (DGEBA) epoxy resin is possible highlighting the potential use of these capsules as a chemical delivery system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Covalent/crystallite cross-linked co-network hydrogels have been prepared using epoxy and PVA through a cyclic freezing-thawing process. The PVA/epoxy hydrogels show enhanced mechanical strength and toughness. PVA/epoxy hydrogels with 4 wt% epoxy loading display maximum tensile strength and toughness of 1.1 MPa and 2838 kJ/m3 respectively. The fracture toughness of PVA/epoxy hydrogels ranges from 160 to 450 J/m2. Radius of gyration and fractal information of the hydrogels were obtained by fitting the SAXS data to the Guinier and power law models. The enhanced mechanical properties are attributed to the increase in covalent bonding and decrease in crystallite distribution with an increase in epoxy content. However a larger hysteresis is shown for PVA/epoxy hydrogels due to irreversible destruction of covalent bonds between epoxy and PVA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites of polypropylene (PP) and polypropylene/styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) blends with exfoliated graphene nanoplatelets (xGnP) were prepared by melt-mixing method. The incorporation of xGnP increased the stiffness and crystallinity of PP at the expense of toughness and the molecular mobility. The effect of addition of SEBS on the mechanical, viscoelastic, thermal degradation and crystallization properties of PP/xGnP composites was studied. The addition of SEBS into PP transformed the phase structure and distribution of xGnP in the PP matrix. SEM micrographs revealed that SEBS polymer chains formed a coating over the graphene nanoplatelets, which strengthened the interface between the filler and the matrix, and improved the dispersion and distribution of the filler throughout the matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer-based materials are extensively used in various applications such as aircrafts, civilian structures, oil and gas platforms and electronics. They are, however, inherently damage prone and over time, the formation of cracks and microscopic damages influences the thermo-mechanical and electrical properties, which eventually results in the total failure of the materials. This paper provides an overview of the principal causes of cracking in polymer and composites and summarizes the recent progress in the development of non-destructive techniques in crack detection. Furthermore, recent progress in the development of bio-inspired self-healing methods in autonomic repair is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nano-modified matrix based on an epoxy resin and montmorillonite (MMT) layered silicates, was successfully infiltrated through 10 ply of carbon fibre preform. A combined fabrication process of a vacuum assisted resin infusion method (VARIM) followed by a rapid heating rate and mechanical vibration during cure, facilitated the infiltration of the nano-modified matrix through the preform. This was achieved by dispersing the MMT clay in the resin and ensuring that the viscosity of the nano-modified matrix remained low during fabrication. SEM-EDX (energy dispersive X-ray spectroscopy) spectra showed that chemical constituents within MMT clay including silicon, aluminium and magnesium elements had permeated through the fibre preform and were detected throughout the laminate. A homogeneous resin/particle distribution was achieved with the size of clay particles ranging from 100 nm to 1 μm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Strengthened concrete structures using advanced materials such as CFRP composites has been proved an efficient technique. The bonding agent (epoxy resin) used to bond the CFRP composites with the concrete structures is the main parameter that contributes to premature failure. I was able to recommend to a new modified epoxy resin to enhance the general behavior of the strengthened concrete structure with respect to durability and ductility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular simulation can provide valuable guidance in establishing clear links between structure and function to enable the design of new polymer-based materials. However, molecular simulation of thermoset polymers in particular, such as epoxies, present specific challenges, chiefly in the credible preparation of polymerised samples. Despite this need, a comprehensive, reproducible and robust process for accomplishing this using molecular simulation is still lacking. Here, we introduce a clear and reproducible cross-linking protocol to reliably generate three dimensional epoxy cross-linked polymer structures for use in molecular simulations. This protocol is sufficiently detailed to allow complete reproduction of our results, and is applicable to any general thermoset polymer. Amongst our developments, key features include a reproducible procedure for calculation of partial atomic charges, a reliable process for generating and validating an equilibrated liquid precursor mixture, and establishment of a novel, robust and reproducible protocol for generating the three-dimensional cross-linked solid polymer. We use these structures as input to subsequent molecular dynamics simulations to calculate a range thermo-mechanical properties, which compare favourably with experimental data. Our general protocol provides a benchmark for the process of simulating epoxy polymers, and can be readily translated to prepare and model epoxy samples that are dynamically cross-linked in the presence of surfaces and nanostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new finite modelling approach is presented to analyse the mode I delamination fracture toughness of z-pinned laminates using the computationally efficient embedded element technique. In the FE model,each z-pin is represented by a single one-dimensional truss element that is embedded within the laminate. Each truss is given the material, geometric and spatial properties associated with the global crackbridging traction response of a z-pin in the laminate; this simplification provides a computationally efficient and flexible model where pin elements are independent of the underlying structural mesh for thelaminate. The accuracy of the FE modelling approach is assessed using mode I interlaminar fracture toughness data for a carbon-epoxy laminate reinforced with z-pins made of copper, titanium or stainless steel. The model is able to predict with good accuracy the crack growth resistance curves and fracture toughness properties for the different types of z-pinned laminate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermoset epoxy resin EPON 862, coupled with the DETDA hardening agent, are utilized as the polymer matrix component in many graphite (carbon fiber) composites. Because it is difficult to experimentally characterize the interfacial region, computational molecular modeling is a necessary tool for understanding the influence of the interfacial molecular structure on bulk-level material properties. The purpose of this research is to investigate the many possible variables that may influence the interfacial structure and the effect they will have on the mechanical behavior of the bulk level composite. Molecular models are established for EPON 862-DETDA polymer in the presence of a graphite surface. Material characteristics such as polymer mass-density, residual stresses, and molecular potential energy are investigated near the polymer/fiber interface. Because the exact degree of crosslinking in these thermoset systems is not known, many different crosslink densities (degrees of curing) are investigated. It is determined that a region exists near the carbon fiber surface in which the polymer mass density is different than that of the bulk mass density. These surface effects extend ~10 Å into the polymer from the center of the outermost graphite layer. Early simulations predict polymer residual stress levels to be higher near the graphite surface. It is also seen that the molecular potential energy in polymer atoms decreases with increasing crosslink density. New models are then established in order to investigate the interface between EPON 862-DETDA polymer and graphene nanoplatelets (GNPs) of various atomic thicknesses. Mechanical properties are extracted from the models using Molecular Dynamics techniques. These properties are then implemented into micromechanics software that utilizes the generalized method of cells to create representations of macro-scale composites. Micromechanics models are created representing GNP doped epoxy with varying number of graphene layers and interfacial polymer crosslink densities. The initial micromechanics results for the GNP doped epoxy are then taken to represent the matrix component and are re-run through the micromechanics software with the addition of a carbon fiber to simulate a GNP doped epoxy/carbon fiber composite. Micromechanics results agree well with experimental data, and indicate GNPs of 1 to 2 atomic layers to be highly favorable. The effect of oxygen bonded to the surface of the GNPs is lastly investigated. Molecular Models are created for systems with varying graphene atomic thickness, along with different amounts of oxygen species attached to them. Models are created for graphene containing hydroxyl groups only, epoxide groups only, and a combination of epoxide and hydroxyl groups. Results show models of oxidized graphene to decrease in both tensile and shear modulus. Attaching only epoxide groups gives the best results for mechanical properties, though pristine graphene is still favored.