999 resultados para enriquecimento por filtração
Resumo:
In this study, we investigated the effect of addition of partially hydrolyzed polyacrylamide (HPAM) and bentonite in the physicochemical properties of acquous drilling fluids. Two formulations were evaluated: F1 formulation, which was used as reference, containing carboxymethylcellulose (CMC), magnesium oxide (MgO), calcite (calcium carbonate - CaCO3 ), xanthan gum, sodium chloride (NaCl) and triazine (bactericidal); and F2, containig HPAM steady of CMC and bentonite in substituition of calcite. The prepared fluids were characterized by rheological properties, lubricity and fluid loss. Calcite was characterized by granulometry and thermal gravimetric analysis (TGA). The formulation F2 presented filtration control at 93◦C 34 mL while F1 had total filtration. The lubricity coefficient was 0.1623 for F2 and 0.2542 for F1, causing reduction in torque of 25% for F1 and 52 % for F2, compared to water. In the temperature of 49 ◦C and shear rate of 1022 s −1 , the apparent viscosities were 25, 5 and 48 cP for F1 and F2 formulation, respectively, showing greater thermal resistance to F2. With the confirmation of higher thermal stability of F2, factorial design was conducted in order to determine the HPAM and of bentonite concentrations that resulted in the better performance of the fluids. The statistical design response surfaces indicated the best concentrations of HPAM (4.3g/L) and bentonite (28.5 g/L) to achieve improved properties of the fluids (apparent viscosity, plastic viscosity, yield point and fluid loss) with 95% confidence, as well as the correlations between these factors (HPAM and bentonite concentrations). The thermal aging tests indicated that the formulations containing HPAM and bentonite may be used to the maximum temperature until 150 ◦C. The analyze of the filter cake formed after filtration of fluids by X-ray diffraction showed specific interactions between the bentonite and HPAM, explaining the greater thermal stability of F2 compared to the fluid F1, that supports maximum temperature of 93 ◦C.
Resumo:
Water injection in oil reservoirs is a recovery technique widely used for oil recovery. However, the injected water contains suspended particles that can be trapped, causing formation damage and injectivity decline. In such cases, it is necessary to stimulate the damaged formation looking forward to restore the injectivity of the injection wells. Injectivity decline causes a major negative impact to the economy of oil production, which is why, it is important to foresee the injectivity behavior for a good waterflooding management project. Mathematical models for injectivity losses allow studying the effect of the injected water quality, also the well and formation characteristics. Therefore, a mathematical model of injectivity losses for perforated injection wells was developed. The scientific novelty of this work relates to the modeling and prediction of injectivity decline in perforated injection wells, considering deep filtration and the formation of external cake in spheroidal perforations. The classic modeling for deep filtration was rewritten using spheroidal coordinates. The solution to the concentration of suspended particles was obtained analytically and the concentration of the retained particles, which cause formation damage, was solved numerically. The acquisition of the solution to impedance assumed a constant injection rate and the modified Darcy´s Law, defined as being the inverse of the normalized injectivity by the inverse of the initial injectivity. Finally, classic linear flow injectivity tests were performed within Berea sandstone samples, and within perforated samples. The parameters of the model, filtration and formation damage coefficients, obtained from the data, were used to verify the proposed modeling. The simulations showed a good fit to the experimental data, it was observed that the ratio between the particle size and pore has a large influence on the behavior of injectivity decline.
Resumo:
Despite the numerous advantages resulting from the use of membrane filters technology, intrinsic limitations fouling process become relevant to its applicability. The control of operating conditions is an important tool to mitigate fouling and achieve good levels of efficiency. In this sense, the objective of this study was to investigate the effect of transmembrane pressure and concentrate flow in the performance of ultrafiltration, applied to the post-treatment of domestic sewage. The process was evaluated and optimized by varying the pressure (0.5 and 1.5 bar) and the concentrate flow (300 and 600 L/h), using a 22 factorial design, in order to investigate the effects on the permeate flow and quality of effluents generated at each operating condition. We evaluated the following quality indicators for permeate: pH, electrical conductivity, total suspended solids, turbidity, calcium and Chemical Oxygen Demand (COD). In all tests, we observed marked reduction in the permeate flux at the early stages, followed by a slow decline that lasted until it reaches a relatively constant level, around 120 minutes of filtration. The increased pressure resulted in a higher initial permeate flux, but the decrease of the flow with time is greater for tests at higher pressure, indicating a more pronounced fouling process. On the other hand, increasing the concentrate flow resulted in a slower decline in permeate flux with the filtration time. Regarding the quality of permeate, the transmembrane pressure of 0,5 bar was the one that allowed better results, and was statistically confirmed through the two-way ANOVA test with repeated measures, significant effect of pressure on the turbidity of the permeate. The concentrate flow, in turn, showed no significant influence on any of the quality parameters. Thus, we conclude that, from an economic and environmental point of view, it is more interesting to operate ultrafiltration membrane system with a lower concentrate flow associated with a low transmembrane pressure, since under these conditions will produce less waste, and the permeate will present lower concentrations of the analyzed constituent, especially lower turbidity.
Resumo:
The use of behavioural indicators of suffering and welfare in captive animals has produced ambiguous results. In comparisons between groups, those in worse condition tend to exhibit increased overall rate of Behaviours Potentially Indicative of Stress (BPIS), but when comparing within groups, individuals differ in their stress coping strategies. This dissertation presents analyses to unravel the Behavioural Profile of a sample of 26 captive capuchin monkeys, of three different species (Sapajus libidinosus, S. flavius and S. xanthosternos), kept in different enclosure types. In total, 147,17 hours of data were collected. We explored four type of analysis: Activity Budgets, Diversity indexes, Markov chains and Sequence analyses, and Social Network Analyses, resulting in nine indexes of behavioural occurrence and organization. In chapter One we explore group differences. Results support predictions of minor sex and species differences and major differences in behavioural profile due to enclosure type: i. individuals in less enriched enclosures exhibited a more diverse BPIS repertoire and a decreased probability of a sequence with six Genus Normative Behaviour; ii. number of most probable behavioural transitions including at least one BPIS was higher in less enriched enclosures; iii. proeminence indexes indicate that BPIS function as dead ends of behavioural sequences, and proeminence of three BPIS (pacing, self-direct, active I) were higher in less enriched enclosures. Overall, these data are not supportive of BPIS as a repetitive pattern, with a mantra-like calming effect. Rather, the picture that emerges is more supportive of BPIS as activities that disrupt organization of behaviours, introducing “noise” that compromises optimal activity budget. In chapter Two we explored individual differences in stress coping strategies. We classified individuals along six axes of exploratory behaviour. These were only weakly correlated indicating low correlation among behavioural indicators of syndromes. Nevertheless, the results are suggestive of two broad stress coping strategies, similar to the bold/proactive and shy/reactive pattern: more exploratory capuchin monkeys exhibited increased values of proeminence in Pacing, aberrant sexual display and Active 1 BPIS, while less active animals exhibited increased probability in significant sequences involving at least one BPIS, and increased prominence in own stereotypy. Capuchin monkeys are known for their cognitive capacities and behavioural flexibility, therefore, the search for a consistent set of behavioural indictors of welfare and individual differences requires further studies and larger data sets. With this work we aim contributing to design scientifically grounded and statistically correct protocols for collection of behavioural data that permits comparability of results and meta-analyses, from whatever theoretical perspective interpretation it may receive.
Resumo:
In the well drilling operations problems caused by contamination of the drilling fluid are common. The dissolution of ions from the geological formations affects the rheological and filtration properties of the fluids. These ions shield the charges of ionic polymers, leading to its precipitation. In this work was performed a detailed study on the stability of the properties of aqueous solutions and aqueous drilling fluids in the presence of sulphated and carboxylated polymers, using carboxymethylcellulose and kappa-carrageenan as polymer compounds carboxylated and sulfated model, respectively. The effects of ionic strength of the aqueous medium containing Na+, Mg2+ and Ca2+ on rheological properties of the polymer and drilling fluids solutions were evaluated by varying the concentration of salts, pH and temperature. It was observed that the fluids with κ-carrageenan suffered less influence against the contamination by the ions at pH 9 to 10, even at higher concentrations, but higher influence on pH> 11. The fluids containing carboxymethylcellulose were more sensitive to contamination, with rapid reduction in viscosity and significant increase of the filtrate volume, while the fluid based polymer sulfated kappa-carrageenan showed evidence of interaction with cations and preserve the rheological properties and improved stability the volume of filtrate.
Resumo:
In the well drilling operations problems caused by contamination of the drilling fluid are common. The dissolution of ions from the geological formations affects the rheological and filtration properties of the fluids. These ions shield the charges of ionic polymers, leading to its precipitation. In this work was performed a detailed study on the stability of the properties of aqueous solutions and aqueous drilling fluids in the presence of sulphated and carboxylated polymers, using carboxymethylcellulose and kappa-carrageenan as polymer compounds carboxylated and sulfated model, respectively. The effects of ionic strength of the aqueous medium containing Na+, Mg2+ and Ca2+ on rheological properties of the polymer and drilling fluids solutions were evaluated by varying the concentration of salts, pH and temperature. It was observed that the fluids with κ-carrageenan suffered less influence against the contamination by the ions at pH 9 to 10, even at higher concentrations, but higher influence on pH> 11. The fluids containing carboxymethylcellulose were more sensitive to contamination, with rapid reduction in viscosity and significant increase of the filtrate volume, while the fluid based polymer sulfated kappa-carrageenan showed evidence of interaction with cations and preserve the rheological properties and improved stability the volume of filtrate.
Resumo:
The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.
Resumo:
The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.
Resumo:
The ediacaran plutonic activity related to the Brasilian/Pan-African orogeny is one of the most important geological features in the Borborema Province, represented along its extension by numerous batholiths, stocks, and dikes.The object of this study, the Serra Rajada Granitic Pluton (SRGP), located in the central portion of the Piranhas-Seridó River Domain is an example of this activity. This pluton has been the subject of cartographic, petrographic, geochronological and lithogeochemical studies and its rocks were characterized by two facies. First, the granitic facies were described as monzogranites consisting of K-feldspar, plagioclase (oligoclase - An23-24%), quartz and biotite (main mafic) and opaque minerals such as titanite, allanite, apatite, and zircon as accessories. Alteration minerals are chlorite, white mica and carbonate. Second, the dioritic facies consist of rocks formed by quartz diorite containing plagioclase (dominant mineral phase), quartz and K-feldspar. Biotite and amphibole are the dominant mafic minerals; and titanite, opaque minerals, allanite, zircon and apatite are the accessories. However, previous geological mapping work in the region also identified the presence of other lithostratigraphic units. These were described as gneisses and migmatites with undifferentiated amphibolite lenses related to the Caicó Complex (Paleoproterozoic) and metasedimentary rocks of the Seridó Group (Neoproterozoic) composed of paragneiss with calc-silicate lenses, muscovite quartzite and biotite schist (respectively, the Jucurutu formations, Equador and Seridó), the host rocks for the SRGP rocks. Leucomicrogranite and pegmatite dikes have also been identified, both related to the end of the Ediacaran magmatism and colluvial- eluvial and alluvial deposits related to Neogene and Quaternary, respectively. Lithogeochemical data on the SRGP granite facies, highlighted quite evolved rocks (SiO2 69% to 75%), rich in alkalis (Na2O+K2O ≥ 8.0%), depleted of MgO (≤ 0.45%), CaO (≤ 1.42%) and TiO2 (≤ 0.36%) and moderate levels of Fe2O3t (2.16 to 3.53%). They display transitional nature between metaluminous and peraluminous (predominance of the latter) with sub-alkaline/monzonitic (High K calcium-alkali) affinity. Harker diagrams show negative correlations for Fe2O3t, MgO, and CaO, indicating mafic and plagioclase fractionation. REE spectrum shows enrichment of LREE relative to heavy REE (LaN/YbN = 23.70 to 10.13), with negative anomaly in the Eu (Eu/Eu* = 0.70 to 0.23), suggesting fractionation or accumulation in the feldspars source (plagioclase). Data integration allows to correlate the SRGP rocks with those described as Calcium-Alkaline Suite of equigranular High K. The crystallization conditions of the SRGP rocks were determined from the integration of petrographic and lithogeochemical data. These data indicated intermediate to high conditions of ƒO2 (mineral paragenesis titanite + magnetite + quartz), parent magma saturated in H2O (early biotite crystallization), tardi-magmatic processes of fluids rich in ƒCO2, H2O and O2 causing part of the mineral assembly to change (plagioclase carbonation and saussuritization, biotite chloritization and opaques Sphenitization). Thermobarometrical conditions were estimated based on geochemical parameters (Zr and P2O5) and CIPW normative minerals, with results showing the liquidus minimum temperature of about800°C and the solidus temperature of approximately 700°C. The final/minimum crystallization pressure are suggested to be between 3 and 5 Kbar. The presence of zoned minerals (plagioclase and allanite) associated with lithogeochemical data in bi-log diagrams for Rb vs. Ba and Rb vs. Sr suggest the role of fractional crystallization as the dominant process in the magmatic evolution of SRGP. U-Pb Geochronological and Sm-Nd isotope studies indicated, respectively, the crystallization age of biotite monzogranite as 557 ± 13 Ma, with TDM model age of 2.36 Ga, and εNd value of -20.10 to the crystallization age, allowing to infer paleoproterozoic crustal source for the magma.
Resumo:
The ediacaran plutonic activity related to the Brasilian/Pan-African orogeny is one of the most important geological features in the Borborema Province, represented along its extension by numerous batholiths, stocks, and dikes.The object of this study, the Serra Rajada Granitic Pluton (SRGP), located in the central portion of the Piranhas-Seridó River Domain is an example of this activity. This pluton has been the subject of cartographic, petrographic, geochronological and lithogeochemical studies and its rocks were characterized by two facies. First, the granitic facies were described as monzogranites consisting of K-feldspar, plagioclase (oligoclase - An23-24%), quartz and biotite (main mafic) and opaque minerals such as titanite, allanite, apatite, and zircon as accessories. Alteration minerals are chlorite, white mica and carbonate. Second, the dioritic facies consist of rocks formed by quartz diorite containing plagioclase (dominant mineral phase), quartz and K-feldspar. Biotite and amphibole are the dominant mafic minerals; and titanite, opaque minerals, allanite, zircon and apatite are the accessories. However, previous geological mapping work in the region also identified the presence of other lithostratigraphic units. These were described as gneisses and migmatites with undifferentiated amphibolite lenses related to the Caicó Complex (Paleoproterozoic) and metasedimentary rocks of the Seridó Group (Neoproterozoic) composed of paragneiss with calc-silicate lenses, muscovite quartzite and biotite schist (respectively, the Jucurutu formations, Equador and Seridó), the host rocks for the SRGP rocks. Leucomicrogranite and pegmatite dikes have also been identified, both related to the end of the Ediacaran magmatism and colluvial- eluvial and alluvial deposits related to Neogene and Quaternary, respectively. Lithogeochemical data on the SRGP granite facies, highlighted quite evolved rocks (SiO2 69% to 75%), rich in alkalis (Na2O+K2O ≥ 8.0%), depleted of MgO (≤ 0.45%), CaO (≤ 1.42%) and TiO2 (≤ 0.36%) and moderate levels of Fe2O3t (2.16 to 3.53%). They display transitional nature between metaluminous and peraluminous (predominance of the latter) with sub-alkaline/monzonitic (High K calcium-alkali) affinity. Harker diagrams show negative correlations for Fe2O3t, MgO, and CaO, indicating mafic and plagioclase fractionation. REE spectrum shows enrichment of LREE relative to heavy REE (LaN/YbN = 23.70 to 10.13), with negative anomaly in the Eu (Eu/Eu* = 0.70 to 0.23), suggesting fractionation or accumulation in the feldspars source (plagioclase). Data integration allows to correlate the SRGP rocks with those described as Calcium-Alkaline Suite of equigranular High K. The crystallization conditions of the SRGP rocks were determined from the integration of petrographic and lithogeochemical data. These data indicated intermediate to high conditions of ƒO2 (mineral paragenesis titanite + magnetite + quartz), parent magma saturated in H2O (early biotite crystallization), tardi-magmatic processes of fluids rich in ƒCO2, H2O and O2 causing part of the mineral assembly to change (plagioclase carbonation and saussuritization, biotite chloritization and opaques Sphenitization). Thermobarometrical conditions were estimated based on geochemical parameters (Zr and P2O5) and CIPW normative minerals, with results showing the liquidus minimum temperature of about800°C and the solidus temperature of approximately 700°C. The final/minimum crystallization pressure are suggested to be between 3 and 5 Kbar. The presence of zoned minerals (plagioclase and allanite) associated with lithogeochemical data in bi-log diagrams for Rb vs. Ba and Rb vs. Sr suggest the role of fractional crystallization as the dominant process in the magmatic evolution of SRGP. U-Pb Geochronological and Sm-Nd isotope studies indicated, respectively, the crystallization age of biotite monzogranite as 557 ± 13 Ma, with TDM model age of 2.36 Ga, and εNd value of -20.10 to the crystallization age, allowing to infer paleoproterozoic crustal source for the magma.
Resumo:
In this work a chitosan (CS) ionically crosslinked were manufactured by treatment with sulfuric acid solution for application in the treatment of wastewater from oil industry. Two crosslinking process were developed: homogeneous and heterogeneous. In the homogeneous process the ratio molar of SO42-/ NH3+ (1:6 and 1:4) were the variable analyzed, denominated CS16 and CS14 respectively. In the heterogeneous process the soaking time of the membranes in sulfuric acid solution were the variable studied, being used times of 5 (CS5) and 30 (CS30) minutes. FTIR-ATR results indicated no changes in the characteristics of chitosan after homogeneous crosslinking process, while heterogeneous crosslinking showed formation of ionic bonds between protonated groups from chitosan and the crosslinking agent sulfate ions. TG/DTG and XRD analysis confirmed the formation of these interactions, as also shown the new structure on the surface region of CS5 and CS30 membranes compared to CS, CS16 e CS14. Swelling test in aqueous medium have shown that crosslinking process reduced the membrane sorption capacity. Swelling test in acid medium demonstrated that CS16 and CS14 membranes increasing the adsorption capacity up to a maximum percentage of 140% approximately, whereas the CS5 e CS30 reached a maximum of 60%. The mechanical properties indicated the stiff and ductile behavior of crosslinked membrane. Adsorption experiments of CuCl2 results that CS16 membranes reached the efficiency maximum with 73% of copper removal at pH 5.0 and 87% at pH 4.0. The experiments with CuSO4 also obtained efficiency maximum to the CS16 membrane and 80% to the removal of Cu2+ ions. Also was verified that the increase of concentration and temperature cause a decrease in the adsorption capacity for all membranes. Kinetics study indicated that pseudo-second-order obtained characterized better the membranes. Equilibrium studies demonstrated that the CS, CS16 and CS14 follow the Langmuir model, whereas CS5 and CS30 follows Freundlich model. Filtration experiments results with rejection maximum to the CS16 and CS5 membranes, reaching 92 and 98% respectively.
Resumo:
In this work a chitosan (CS) ionically crosslinked were manufactured by treatment with sulfuric acid solution for application in the treatment of wastewater from oil industry. Two crosslinking process were developed: homogeneous and heterogeneous. In the homogeneous process the ratio molar of SO42-/ NH3+ (1:6 and 1:4) were the variable analyzed, denominated CS16 and CS14 respectively. In the heterogeneous process the soaking time of the membranes in sulfuric acid solution were the variable studied, being used times of 5 (CS5) and 30 (CS30) minutes. FTIR-ATR results indicated no changes in the characteristics of chitosan after homogeneous crosslinking process, while heterogeneous crosslinking showed formation of ionic bonds between protonated groups from chitosan and the crosslinking agent sulfate ions. TG/DTG and XRD analysis confirmed the formation of these interactions, as also shown the new structure on the surface region of CS5 and CS30 membranes compared to CS, CS16 e CS14. Swelling test in aqueous medium have shown that crosslinking process reduced the membrane sorption capacity. Swelling test in acid medium demonstrated that CS16 and CS14 membranes increasing the adsorption capacity up to a maximum percentage of 140% approximately, whereas the CS5 e CS30 reached a maximum of 60%. The mechanical properties indicated the stiff and ductile behavior of crosslinked membrane. Adsorption experiments of CuCl2 results that CS16 membranes reached the efficiency maximum with 73% of copper removal at pH 5.0 and 87% at pH 4.0. The experiments with CuSO4 also obtained efficiency maximum to the CS16 membrane and 80% to the removal of Cu2+ ions. Also was verified that the increase of concentration and temperature cause a decrease in the adsorption capacity for all membranes. Kinetics study indicated that pseudo-second-order obtained characterized better the membranes. Equilibrium studies demonstrated that the CS, CS16 and CS14 follow the Langmuir model, whereas CS5 and CS30 follows Freundlich model. Filtration experiments results with rejection maximum to the CS16 and CS5 membranes, reaching 92 and 98% respectively.
Resumo:
The average cities inserted in the areas of the Brazilian Cerrado are restructuring in the rural and urban areas in recent decades as a result of agricultural investments. Representative of this process, we chose Rio Verde due to two processes: to develop socioeconomically depending on agricultural production restructuring Cerrado after 1970 and offer average city features regional centrality and intra-urban contradictions. So we have as the problem situation the fact of Rio Verde be inserted in an agricultural region, where the restructured field creates cooperation with the agricultural industry and the tertiary sector, structuring a regional agribusiness success. However, let us doubts about the effects of the restructuring process in socio-economic and environmental terms, in relation to the field and the city. Therefore, the aim of this thesis is to contribute to the discussion about the medium- sized Cerrado cities whose functions are linked to agribusiness, and understand the logic and the effects of the restructuring process in rural and urban areas, having Rio Verde – GO as the reference for studying. Regarding the methodological practice research, it is a qualitative research, developed based on three pillars: theoretical, documentary and field. We conclude the thesis stating that the modern field, the result of agricultural production restructuring, fomented an economy specialized in agribusiness, which led to the enrichment of the field, the formation of agro-industrial complex and the formation of an average city, specializing in agribusiness, whose centrality exceeds its micro-region. In terms of effects, we conclude that process agricultural production restructuring, generated positive impacts for the insertion of Savannahs in the national economy, and to the cities inserted in the modern field. On the other hand, country and city inserted in agricultural regions, masked under the agribusiness speech, perverse effects of socioeconomic and environmental order, is an inviting system to invest and exclusionary, when there is nothing to offer. Thus, the problems are choked on site, leaving only the speech of wealth to be disclosed in the national order.
Resumo:
Metabolic syndrome (MS) is defined as a set of cardiovascular risk factors including obesity, systemic high blood pressure (SHBP), changes in glucose metabolism and dyslipidemia. The prevalence of MS in renal transplant recipients (RTR) ranges from 15% to 65%, increasing the risk of cardiovascular disease (CVD) and reducing renal allograft survival in the long term. The objectives of this study were to determine the prevalence and frequency of MS in renal transplant patients according to gender and time of transplantation and to evaluate renal function in patients with and without MS. Patients and Methods: Crosssectional study conducted from August 2012 to September 2013 involving 153 renal transplant recipients. MS was defined according to the National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III). The sample was divided into two groups: patients with metabolic syndrome (WMS patients) and patients without metabolic syndrome (WoMS patients) and according to gender. The WMS patients were stratified into quartiles according to the renal transplantation period (RTP), and variables related to MS were analyzed for both sexes. Results: MS was diagnosed in 58.1% of the studied population, specifically in MS was found 58.4% of men and 41.6% of women (P ˂ 0.05). The male and female with MS were 48.8 ± 11.6 years old vs. 47.1 ± 12.7 years old and the time of post transplantation was 76.1 ± 76.5 months vs. 84.7 ± 65.4 months, respectively (P >0,05). When we compared the sexes in the WMS group, systolic blood pressure (SBP) was higher in men (137.0 ± 18.1 vs. 128.9 ± 13.6 mmHg, P= 0.029), while the other components of MS did not exhibit significant differences. With respect to renal function, when we compared the sexes in the WMS group, the serum creatinine (sCr) was higher in men (1.73 ± 0.69 vs. 1.31 ± 0.47 mg/dL, P= 0.0012), while the urinary protein/creatinine ratio was higher in women (0.48 ± 0.69 vs. 0.37 ± 0.48 mg/dL, P=0.0150). We found no significant difference in the estimated glomerular filtration rate (eGFR) between WMS and WoMS patients for women and men (50.6 ± 19.1 vs. 50.1 ± 18.3 mL/min/1.73 m², P=0.909). We found a significant positive association between eGFR and HDL-c levels (r=0.3371; P=0.0145) for WMS men. The MS components showed no significant differences in RTP for different interquartile ranges, except for diastolic blood pressure (DBP) in women, where there was a significant variation among the quartiles evaluated (P=0.0009). Conclusion: the prevalence of MS was similar in the different quartiles in both sexes, in relation to time post TX. There was no significant difference in eGFR in patients WMS and WoMS, in both sexes. Concluding that the MS did not vary in relation to time post transplant.
Resumo:
The hydrocycloning operation has a goal to separate solid-liquid suspensions and liquid-liquid emulsions through the centrifugal force action. Hydrocyclones are equipment with reduced size and used in both clarification and thickening. This device is used in many areas, like petrochemical and minerals process, and accumulate advantages like versatility and low cost of maintenance. However, the demand to improve the process and to reduce the costs has motivated several studies of equipment optimization. The filtering hydrocyclone is a non-conventional equipment developed at FEQUI/UFU with objective to improve the hydrocycloning separation efficiency. The purpose of this study is to evaluate the operating conditions of feed concentration and underflow diameter on the performance of a filtering geometry optimized to minimization of energy costs. The filtration effect was investigated through the comparison between the performance of the Optimized Filtering Hydrocyclone (HCOF) and the Optimized Concentrator Hydrocyclone (HCO). Because of the resemblance of hydrocyclones performance, the filtration did not represent significant effect on the performance of the HCOF. It was found that in this geometry the decrease of the variable underflow diameter was very favorable to thickening operation. The suspension concentration of quartzite at 1.0% of solids in volume was increased about 42 times when the 3 mm underflow diameter was used. The increase on the feed solid percentage was good for decreasing the energy spent, so that a minimum number of Euler of 730 was achieved at CVA = 10.0%v. However, a greater amount of solids in suspension leads to a lower efficiency of the equipment. Therefore, to minimize the underflow-to-throughput ratio and keep a high efficiency level, it is indicated to work with dilute suspension (CVA = 1.0%) and 3 mm underflow diameter (η = 67%). But if it is necessary to work with high feed concentration, the use of 5 mm underflow diameter provides a rise in the efficiency. The HCO hydrocyclone was compared to the traditional family of hydrocyclones Rietema and presented advantages like higher efficiency (34% higher in average) and lower energy costs (20% lower in average). Finally, the efficiency curves and project equation have been raised for the HCO hydrocyclone each with satisfactory adjust.