985 resultados para electron-phonon interaction
Resumo:
Aims: To investigate interactions between rumen protozoa and Shiga toxin-producing Escherichia coli (STEC) and to ascertain whether it is likely that rumen protozoa act as ruminant hosts for STEC. Methods and Results: The presence of stx genes in different microbial fractions recovered from cattle and sheep rumen contents and faeces was examined using PCR. In animals shedding faecal STEC, stx genes were not detected in the rumen bacterial or rumen protozoal fractions. Direct interactions between ruminal protozoa and STEC were investigated by in vitro co-incubation. Rumen protozoa did not appear to ingest STEC, a STEC lysogen or non-STEC E. coli populations when co-incubated. Conclusions: The ruminal environment is unlikely to be a preferred habitat for STEC. Bacterial grazing by rumen protozoa appears to have little, if any, effect on STEC populations. Significance and Impact of the Study: This study indicates that ruminal protozoa are unlikely to be a major factor in the survival of STEC in ruminants. They appear as neither a host that protects STEC from the ruminal environment nor a predator that might reduce STEC numbers.
Resumo:
This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinicallyuseful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.
Resumo:
Driving can be a lonely activity. While there has been a lot of research and technical inventions concerning car-to-car communication and passenger entertainment, there is still little work concerning connecting drivers. Whereas tourism is very much a social activity, drive tourists have few options to communicate with fellow travellers. The proposed project is placed at the intersection of tourism and driving and aims to enhance the trip experience during driving through social interaction. This thesis explores how a mobile application that allows instant messaging between travellers sharing similar context can add to road trip experiences. To inform the design of such an application, the project adopted the principle of the user-centred design process. User needs were assessed by running an ideation workshop and a field trip. Findings of both studies have shown that tourists have different preferences and diverse attitudes towards contacting new people. Yet all participants stressed the value of social recommendations. Based on those results and a later expert review, three prototype versions of the system were created. A prototyping session with potential end users highlighted the most important features including the possibility to view user profiles, choose between text and audio input and receive up-to-date information. An implemented version of the prototype was evaluated in an exploratory study to identify usability related problems in an actual use case scenario as well as to find implementation bugs. The outcomes of this research are relevant for the design of future mobile tourist guides that leverage from benefits of social recommendations.
Resumo:
XPS studies of the interaction of carbon monoxide with surfaces of Fe, Co and Ni indicate that at 300 K, the disproportionation reaction is prominent up to exposures of 103 L giving rise to high surface concentrations of carbon. At higher exposures and higher temperatures, dissociation of carbon monoxide accompanied by the formation of surface oxide layers becomes more prominent. In the case of copper, disproportionation is prominent up to 104 L even at 500 K followed by dissociation at higher exposures. These results are also supported by Auger spectroscopic studies.
Resumo:
Electron and x-ray diffraction experiments on the metlt-spun Al100−x Fe x (x=14, 18, 25) alloys are carried out. It is observed that all the melt-spun alloys possessing the quasi-crystalline phases have icosahedral point-group symmetry.
Resumo:
In this work, effects of pressure sensitive yielding and plastic dilatancy on void growth and void interaction mechanisms in fracture specimens displaying high and low constraint levels are investigated. To this end, large deformation finite element simulations are carried out with discrete voids ahead of the notch. It is observed that multiple void interaction mechanism which is favored by high initial porosity is further accelerated by pressure sensitive yielding, but is retarded by loss of constraint. The resistance curves predicted based on a simple void coalescence criterion show enhancement in fracture resistance when constraint level is low and when pressure sensitivity is suppressed.
Resumo:
Ce(3d) and (4d) core level XPS spectra of CeX = Fe, Co, Ni and Cu) suggest that the mean valence of Ce was as well as 4f hybridization strength decrease systematically from Fe to Cu. This observation is in agreement with the results of Bremstrahlung Isochromat Spectroscopy (BIS), but in disagreement with LIII-edge data reported earlier.
Resumo:
Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the north-west of Mexico (CIANO) and sites across Australia during 3 seasons. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. Previously, we have evaluated both the performance of genotypes across environments and the genotype x environment interaction (G x E). The objective of this study was to interpret the G x E for yield in terms of crop attributes measured at individual sites and to identify the potential environmental drivers of this interaction. Groups of SBWs with consistent yield performance were identified, often comprising closely related lines. However, contrasting performance was also relatively common among sister lines or between a recurrent parent and its SBWs. Early flowering was a common feature among lines with broad adaptation and/or high yield in the northern Australian wheatbelt, while yields in the southern region did not show any association with the maturity type. Lines with high yields in the southern and northern regions had cooler canopies during flowering and early grain filling. Among the SBWs with Australian genetic backgrounds, lines best adapted to CIANO were tall (>100 cm), with a slightly higher ground cover. These lines also displayed a higher concentration of water-soluble carbohydrates in the stem at flowering, which was negatively correlated with stem number per unit area when evaluated in southern Australia (Horsham). Possible reasons for these patterns are discussed. Selection for yield at CIANO did not specifically identify the lines best adapted to northern Australia, although they were not the most poorly adapted either. In addition, groups of lines with specific adaptation to the south would not have been selected by choosing the highest yielding lines at CIANO. These findings suggest that selection at CIMMYT for Australian environments may be improved by either trait based selection or yield data combined with trait information. Flowering date, canopy temperature around flowering, tiller density, and water-soluble carbohydrate concentration in the stem at flowering seem likely candidates.
Resumo:
In this paper we report the analysis of dc breakdown tests on mixtures of CC12F2, SF6, C-C4F8, 2-C4F8, N2, C02, CF4, CHF3, and 1,1,1-CH3CF3 gases on the basis of the NKH formula Vmix=k(pd)aNbUC developed by us earlier for the binary mixtures of SF6 with air, N2, N20, and CO2. It is shown that while a and c have the values 0.915 and 0.850 respectively as earlier, k and b depend on the component gases. There is a good agreement between the calculated values on the basis of the formula and measured values reported in the literature.
Resumo:
Abstract is not available.
Resumo:
Distraction in the workplace is increasingly more common in the information age. Several tasks and sources of information compete for a worker's limited cognitive capacities in human-computer interaction (HCI). In some situations even very brief interruptions can have detrimental effects on memory. Nevertheless, in other situations where persons are continuously interrupted, virtually no interruption costs emerge. This dissertation attempts to reveal the mental conditions and causalities differentiating the two outcomes. The explanation, building on the theory of long-term working memory (LTWM; Ericsson and Kintsch, 1995), focuses on the active, skillful aspects of human cognition that enable the storage of task information beyond the temporary and unstable storage provided by short-term working memory (STWM). Its key postulate is called a retrieval structure an abstract, hierarchical knowledge representation built into long-term memory that can be utilized to encode, update, and retrieve products of cognitive processes carried out during skilled task performance. If certain criteria of practice and task processing are met, LTWM allows for the storage of large representations for long time periods, yet these representations can be accessed with the accuracy, reliability, and speed typical of STWM. The main thesis of the dissertation is that the ability to endure interruptions depends on the efficiency in which LTWM can be recruited for maintaing information. An observational study and a field experiment provide ecological evidence for this thesis. Mobile users were found to be able to carry out heavy interleaving and sequencing of tasks while interacting, and they exhibited several intricate time-sharing strategies to orchestrate interruptions in a way sensitive to both external and internal demands. Interruptions are inevitable, because they arise as natural consequences of the top-down and bottom-up control of multitasking. In this process the function of LTWM is to keep some representations ready for reactivation and others in a more passive state to prevent interference. The psychological reality of the main thesis received confirmatory evidence in a series of laboratory experiments. They indicate that after encoding into LTWM, task representations are safeguarded from interruptions, regardless of their intensity, complexity, or pacing. However, when LTWM cannot be deployed, the problems posed by interference in long-term memory and the limited capacity of the STWM surface. A major contribution of the dissertation is the analysis of when users must resort to poorer maintenance strategies, like temporal cues and STWM-based rehearsal. First, one experiment showed that task orientations can be associated with radically different patterns of retrieval cue encodings. Thus the nature of the processing of the interface determines which features will be available as retrieval cues and which must be maintained by other means. In another study it was demonstrated that if the speed of encoding into LTWM, a skill-dependent parameter, is slower than the processing speed allowed for by the task, interruption costs emerge. Contrary to the predictions of competing theories, these costs turned out to involve intrusions in addition to omissions. Finally, it was learned that in rapid visually oriented interaction, perceptual-procedural expectations guide task resumption, and neither STWM nor LTWM are utilized due to the fact that access is too slow. These findings imply a change in thinking about the design of interfaces. Several novel principles of design are presented, basing on the idea of supporting the deployment of LTWM in the main task.
Resumo:
The ratio of the electron attachment coefficient eta to the gas pressure p (reduced to 0 degrees C) evaluated from the Townsend current growth curves in binary mixtures of electronegative gases (SF6, CCl2F2, CO2) and buffer gases (N2, Ar, air) clearly indicate that the eta /p ratios do not scale as the partial pressure of electronegative gas in the mixture. Extensive calculations carried out using data experimentally obtained have shown that the attachment coefficient of the mixture eta mix can be expressed as eta mix= eta (1-exp- beta F/(100-F)) where eta is the attachment coefficient of the 100% electronegative gas, F is the percentage of the electronegative gas in the mixture and beta is a constant. The results of this analysis explain to a high degree of accuracy the data obtained in various mixtures and are in very good agreement with the data deduced by Itoh and co-workers (1980) using the Boltzmann equation method.
Resumo:
Cibacron Blue F3G-A, a probe used to monitor nucleotide binding domains in enzymes, inhibited sheep liver 5, 10-methylenetetrahydrofolate reductase competitively with respect to 5-methyltetrahydrofolate and NADPH. The Ki values obtained by kinetic methods and the Kd value for the binding of the dye to the enzyme estimated by protein fluorescence quenching were in the range 0·9-1·2 μM. Another triazine dye, Procion Red HE-3B interacted with the enzyme in an essentially similar manner to that observed with Cibacron Blue F3G-A. These results as well as the interaction of the dye with the enzyme monitored by difference spectroscopy and intrinsic protein fluorescence quenching methods indicated that the dye was probably interacting at the active site of the enzyme by binding at a hydrophobic region.
Resumo:
The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B-perpendicular to. While the amplitude of the oscillations is strongly enhanced with increasing B-perpendicular to, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (d rho/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.
Resumo:
Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NOx, and unburned hydrocarbons-need to be fully converted to CO2, N-2, and H2O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al2O3 or SiO2 promoted by CeO2. However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce1-xMxO2-delta and Ce1-x-yTiyMxO2-delta (M = Pt, Pd, Rh; x = 0,01-0.02, delta approximate to x, y = 0.15-0.25) oxides in fluorite structure, In these oxide catalysts, pt(2+), Pd2+, or Rh3+ ions are substituted only to the extent of 1-2% of Ce4+ ion. Lower-valent noble metal ion substitution in CeO2 creates oxygen vacancies. Reducing molecules (CO, H-2, NH3) are adsorbed onto electron-deficient noble metal ions, while oxidizing (02, NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NOx reduction (with >80% N-2 selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO2 or Ce1-xTixO2 were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the more expensive Pt and Rh metals are not necessary in exhaust catalysts. We have also grown these nanocrystalline ionic catalysts on ceramic cordierite and have reproduced the results we observed in powder material on the honeycomb catalytic converter. Oxygen in a CeO2 lattice is activated by the substitution of Ti ion, as well as noble metal ions. Because this substitution creates longer Ti-O and M-O bonds relative to the average Ce-O bond within the lattice, the materials facilitate high oxygen storage and release. The interaction among M-0/Mn+, Ce4+/Ce3+, and Ti4+/Ti3+ redox couples leads to the promoting action of CeO2, activation of lattice oxygen and high oxygen storage capacity, metal support interaction, and high rates of catalytic activity in exhaust catalysis.