989 resultados para edge evaluation
Resumo:
The two-year trial of the Queensland minimum passing distance (MPD) road rule began on 7 April 2014. The rule requires motor vehicles to provide cyclists a minimum lateral passing distance of one metre when overtaking cyclists in a speed zone of 60 km/h or less, and 1.5 metres when the speed limit is greater than 60 km/h. This document summarises the evaluation of the effectiveness of the new rule in terms of its: 1. practical implementation; 2. impact on road users’ attitudes and perceptions; and 3. road safety benefits. The Centre for Accident Research and Road Safety – Queensland (CARRS-Q) developed the evaluation framework (Haworth, Schramm, Kiata-Holland, Vallmuur, Watson & Debnath; 2014) for the Queensland Department of Transport and Main Roads (TMR) and was later commissioned to undertake the evaluation. The evaluation included the following components: • Review of correspondence received by TMR; • Interviews and focus groups with Queensland Police Service (QPS) officers; • Road user survey; • Observational study; and • Crash, injury and infringement data analysis.
Resumo:
Cracks in civil structures can result in premature failure due to material degradation and can result in both financial loss and environmental consequences. This thesis reports an effective technique using Acoustic Emission (AE) technique to assess the severity of the crack propagation in steel structures. The outcome of this work confirms that combination of AE parametric analysis and signal processing techniques can be used to evaluate crack propagation under different loading configurations. The technique has potential application to assess and monitor the condition of civil structures.
Resumo:
Objectives: To evaluate the applicability of visual feedback posturography (VFP) for quantification of postural control, and to characterize the horizontal angular vestibulo-ocular reflex (AVOR) by use of a novel motorized head impulse test (MHIT). Methods: In VFP, subjects standing on a platform were instructed to move their center of gravity to symmetrically placed peripheral targets as fast and accurately as possible. The active postural control movements were measured in healthy subjects (n = 23), and in patients with vestibular schwannoma (VS) before surgery (n = 49), one month (n = 17), and three months (n = 36) after surgery. In MHIT we recorded head and eye position during motorized head impulses (mean velocity of 170º/s and acceleration of 1 550º/s²) in healthy subjects (n = 22), in patients with VS before surgery (n = 38) and about four months afterwards (n = 27). The gain, asymmetry and latency in MHIT were calculated. Results: The intraclass correlation coefficient for VFP parameters during repeated tests was significant (r = 0.78-0.96; p < 0.01), although two of four VFP parameters improved slightly during five test sessions in controls. At least one VFP parameter was abnormal pre- and postoperatively in almost half the patients, and these abnormal preoperative VFP results correlated significantly with abnormal postoperative results. The mean accuracy in postural control in patients was reduced pre- and postoperatively. A significant side difference with VFP was evident in 10% of patients. In the MHIT, the normal gain was close to unity, the asymmetry in gain was within 10%, and the latency was a mean ± standard deviation 3.4 ± 6.3 milliseconds. Ipsilateral gain or asymmetry in gain was preoperatively abnormal in 71% of patients, whereas it was abnormal in every patient after surgery. Preoperative gain (mean ± 95% confidence interval) was significantly lowered to 0.83 ± 0.08 on the ipsilateral side compared to 0.98 ± 0.06 on the contralateral side. The ipsilateral postoperative mean gain of 0.53 ± 0.05 was significantly different from preoperative gain. Conclusion: The VFP is a repeatable, quantitative method to assess active postural control within individual subjects. The mean postural control in patients with VS was disturbed before and after surgery, although not severely. Side difference in postural control in the VFP was rare. The horizontal AVOR results in healthy subjects and in patients with VS, measured with MHIT, were in agreement with published data achieved using other techniques with head impulse stimuli. The MHIT is a non-invasive method which allows reliable clinical assessment of the horizontal AVOR.
Resumo:
Synthetic analogues of naturally occurring triterpenoids; glycyrrhetinic acid, arjunolic acid, and boswellic acids, by modification of A-ring with a cyano- and enone-functionality, have been reported. A novel method of synthesis of α-cyanoenones from isoxazoles is reported. Bioassays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyano-enones of boswellic acid and glycyrrhetinic acid.
Resumo:
A major concern of embedded system architects is the design for low power. We address one aspect of the problem in this paper, namely the effect of executable code compression. There are two benefits of code compression – firstly, a reduction in the memory footprint of embedded software, and secondly, potential reduction in memory bus traffic and power consumption. Since decompression has to be performed at run time it is achieved by hardware. We describe a tool called COMPASS which can evaluate a range of strategies for any given set of benchmarks and display compression ratios. Also, given an execution trace, it can compute the effect on bus toggles, and cache misses for a range of compression strategies. The tool is interactive and allows the user to vary a set of parameters, and observe their effect on performance. We describe an implementation of the tool and demonstrate its effectiveness. To the best of our knowledge this is the first tool proposed for such a purpose.
Resumo:
We report a combined experimental and computational study of a low constraint aluminum single crystal fracture geometry and investigate the near-tip stress and strain fields. To this end, a single edge notched tensile (SENT) specimen is considered. A notch, with a radius of 50 µm, is taken to lie in the (010) plane and its front is aligned along the [101] direction. Experiments are conducted by subjecting the specimen to tensile loading using a special fixture inside a scanning electron microscope chamber. Both SEM micrographs and electron back-scattered diffraction (EBSD) maps are obtained from the near-tip region. The experiments are complemented by performing 3D and 2D plane strain finite element simulations within a continuum crystal plasticity framework assuming an isotropic hardening response characterized by the Pierce–Asaro–Needleman model. The simulations show a distinct slip band forming at about 55 deg with respect to the notch line corresponding to slip on (11-bar 1)[011] system, which corroborates well with experimental data. Furthermore, two kink bands occur at about 45 deg and 90 deg with respect to the notch line within which large rotations in the crystal orientation take place. These predictions are in good agreement with the EBSD observations. Finally, the near-tip angular variations of the 3D stress and plastic strain fields in the low constraint SENT fracture geometry are examined in detail.
Resumo:
Optimal allocation of water resources for various stakeholders often involves considerable complexity with several conflicting goals, which often leads to multi-objective optimization. In aid of effective decision-making to the water managers, apart from developing effective multi-objective mathematical models, there is a greater necessity of providing efficient Pareto optimal solutions to the real world problems. This study proposes a swarm-intelligence-based multi-objective technique, namely the elitist-mutated multi-objective particle swarm optimization technique (EM-MOPSO), for arriving at efficient Pareto optimal solutions to the multi-objective water resource management problems. The EM-MOPSO technique is applied to a case study of the multi-objective reservoir operation problem. The model performance is evaluated by comparing with results of a non-dominated sorting genetic algorithm (NSGA-II) model, and it is found that the EM-MOPSO method results in better performance. The developed method can be used as an effective aid for multi-objective decision-making in integrated water resource management.
Resumo:
Drugs and surgical techniques may have harmful renal effects during the perioperative period. Traditional biomarkers are often insensitive to minor renal changes, but novel biomarkers may more accurately detect disturbances in glomerular and tubular function and integrity. The purpose of this study was first, to evaluate the renal effects of ketorolac and clonidine during inhalation anesthesia with sevoflurane and isoflurane, and secondly, to evaluate the effect of tobacco smoking on the production of inorganic fluoride (F-) following enflurane and sevoflurane anesthesia as well as to determine the effect of F- on renal function and cellular integrity in surgical patients. A total of 143 patients undergoing either conventional (n = 75) or endoscopic (n = 68) inpatient surgery were enrolled in four studies. The ketorolac and clonidine studies were prospective, randomized, placebo controlled and double-blinded, while the cigarette smoking studies were prospective cohort studies with two parallel groups. As a sign of proximal tubular deterioration, a similar transient increase in urine N-acetyl-beta-D-glucosaminidase/creatinine (U-NAG/crea) was noted in both the ketorolac group and in the controls (baseline vs. at two hours of anesthesia, p = 0.015) with a 3.3 minimum alveolar concentration hour sevoflurane anesthesia. Uncorrelated U-NAG increased above the maximum concentration measured from healthy volunteers (6.1 units/l) in 5/15 patients with ketorolac and in none of the controls (p = 0.042). As a sign of proximal tubular deterioration, U-glutathione transferase-alpha/crea (U-GST-alpha/crea) increased in both groups at two hours after anesthesia but a more significant increase was noted in the patients with ketorolac. U-GST-alpha/crea increased above the maximum ratio measured from healthy volunteers in 7/15 patients with ketorolac and in 3/15 controls. Clonidine diminished the activation of the renin-angiotensin aldosterone system during pneumoperitoneum; urine output was better preserved in the patients treated with clonidine (1/15 patients developed oliguria) than in the controls (8/15 developed oliguria (p=0.005)). Most patients with pneumoperitoneum and isoflurane anesthesia developed a transient proximal tubular deterioration, as U-NAG increased above 6.1 units/L in 11/15 patients with clonidine and in 7/15 controls. In the patients receiving clonidine treatment, the median of U-NAG/crea was higher than in the controls at 60 minutes of pneumoperitoneum (p = 0.01), suggesting that clonidine seems to worsen proximal tubular deterioration. Smoking induced the metabolism of enflurane, but the renal function remained intact in both the smokers and the non-smokers with enflurane anesthesia. On the contrary, smoking did not induce sevoflurane metabolism, but glomerular function decreased in 4/25 non-smokers and in 7/25 smokers with sevoflurane anesthesia. All five patients with S-F- ≥ 40 micromol/L, but only 6/45 with S-F- less than 40 micromol/L (p = 0.001), developed a S-tumor associated trypsin inhibitor concentration above 3 nmol/L as a sign of glomerular dysfunction. As a sign of proximal tubulus deterioration, U-beta 2-microglobulin increased in 2/5 patients with S-F- over 40 micromol/L compared to 2/45 patients with the highest S-F- less than 40 micromol/L (p = 0.005). To conclude, sevoflurane anesthesia may cause a transient proximal tubular deterioration which may be worsened by a co-administration of ketorolac. Clonidine premedication prevents the activation of the renin-angiotensin aldosterone system and preserves normal urine output, but may be harmful for proximal tubules during pneumoperitoneum. Smoking induces the metabolism of enflurane but not that of sevoflurane. Serum F- of 40 micromol/L or higher may induce glomerular dysfunction and proximal tubulus deterioration in patients with sevoflurane anesthesia. The novel renal biomarkers warrant further studies in order to establish reference values for surgical patients having inhalation anesthesia.
Resumo:
A macrocyclic hydrazone Schiff base was synthesized by reacting 1,4-dicarbonyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol and a series of metal complexes with this new Schiff base were synthesized by reaction with Co(II), Ni(II) and Cu(II) metal salts. The Schiff base and its complexes have been characterized by elemental analyses, IR, H-1 NMR, UV-vis, FAB mass, ESR spectra, fluorescence, thermal, magnetic and molar conductance data. The analytical data reveal that the Co(II), Ni(II) and Cu(II) complexes possess 2:1 metal-ligand ratios. All the complexes are non-electrolytes in DMF and DMSO due to their low molar conductance values. Infrared spectral data suggest that the hydrazone Schiff base behaves as a hexadentate ligand with NON NON donor sequence towards the metal ions. The ESR spectral data shows that the metal-ligand bond has considerable covalent character. The electrochemical behavior of the copper(II) complex was investigated by cyclic voltammetry. The Schiff base and its complexes have also been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Shigella dysentery, Micrococcus, Bacillus subtilis, Bacillus cereus and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Penicillium and Candida albicans) by MIC method. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
[1] We have compared the spectral aerosol optical depth (AOD, tau lambda) and aerosol fine mode fraction (AFMF) of Collection 004 (C004) derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) on board National Aeronautics and Space Administration's (NASA) Terra and Aqua platforms with that obtained from Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), India for the period 2001-2005. The spatially-averaged (0.5 degrees x 0.5 degrees centered at AERONET sunphotometer) MODIS Level-2 aerosol parameters (10 km at nadir) were compared with the temporally averaged AERONET-measured AOD (within +/- 30 minutes of MODIS overpass). We found that MODIS systematically overestimated AOD during the pre-monsoon season (March to June, known to be influenced by dust aerosols). The errors in AOD at 0.66 mu m were correlated with the apparent reflectance at 2.1 mu m (rho*(2.1)) which MODIS C004 uses to estimate the surface reflectance in the visible channels (rho(0.47) = rho*(2.1)/ 4, rho(0.66) = rho*(2.1)/ 2). The large errors in AOD (Delta tau(0.66) > 0.3) are found to be associated with the higher values of rho*(2.1) (0.18 to 0.25), where the uncertainty in the ratios of reflectance is large (Delta rho(0.66) +/- 0.04, Delta rho(0.47) +/- 0.02). This could have resulted in lower surface reflectance, higher aerosol path radiance and thus lead to overestimation in AOD. While MODIS-derived AFMF has binary distribution (1 or 0) with too low (AFMF < 0.2) during dust-loading period, and similar to 1 for the rest of the retrievals, AERONET showed range of values (0.4 to 0.9). The errors in tau(0.66) were also high in the scattering angle range 110 degrees - 140 degrees, where the optical effects of nonspherical dust particles are different from that of spherical particles.
Resumo:
The New Zealand White rabbit has been widely used as a model of limbal stem cell deficiency (LSCD). Current techniques for experimental induction of LSCD utilize caustic chemicals, or organic solvents applied in conjunction with a surgical limbectomy. While generally successful in depleting epithelial progenitors, the depth and severity of injury is difficult to control using chemical-based methods. Moreover, the anterior chamber can be easily perforated while surgically excising the corneal limbus. In the interest of creating a safer and more defined LSCD model, we have therefore evaluated a mechanical debridement technique based upon use of the AlgerBrush II rotating burr. An initial comparison of debridement techniques was conducted in situ using 24 eyes in freshly acquired New Zealand White rabbit cadavers. Techniques for comparison (4 eyes each) included: (1) non-wounded control, (2) surgical limbectomy followed by treatment with 100% (v/v) n-heptanol to remove the corneal epithelium (1-2 minutes), (3) treatment of both limbus and cornea with n-heptanol alone, (4) treatment of both limbus and cornea with 20% (v/v) ethanol (2-3 minutes), (5) a 2.5-mm rounded burr applied to both the limbus and cornea, and (6) a 1-mm pointed burr applied to the limbus, followed by the 2.5-mm rounded burr applied to the cornea. All corneas were excised and processed for histology immediately following debridement. A panel of four assessors subsequently scored the degree of epithelial debridement within the cornea and limbus using masked slides. The 2.5-mm burr most consistently removed the corneal and limbal epithelia. Islands of limbal epithelial cells were occasionally retained following surgical limbectomy/heptanol treatment, or use of the 1-mm burr. Limbal epithelial cells were consistently retained following treatment with either ethanol or n-heptanol alone, with ethanol being the least effective treatment overall. The 2.5-mm burr method was subsequently evaluated in the right eye of 3 live rabbits by weekly clinical assessments (photography and slit lamp examination) for up to 5 weeks, followed by histological analyses (hematoxylin & eosin stain, periodic acid-Schiff stain and immunohistochemistry for keratin 3 and 13). All 3 eyes that had been completely debrided using the 2.5-mm burr displayed symptoms of ocular surface failure as defined by retention of a prominent epithelial defect (~40% of corneal surface at 5 weeks), corneal neovascularization (2 to 3 quadrants), reduced corneal transparency and conjunctivalization of the corneal surface (demonstrated by the presence of goblet cells and/or staining for keratin 13). In conclusion, our findings indicate that the AlgerBrush II rotating burr is an effective method for the establishment of ocular surface failure in New Zealand White rabbits. In particular, we recommend use of the 2.5-mm rotating burr for improved efficiency of epithelial debridement and safety compared to surgical limbectomy.
Resumo:
Skew correction of complex document images is a difficult task. We propose an edge-based connected component approach for robust skew correction of documents with complex layout and content. The algorithm essentially consists of two steps - an 'initialization' step to determine the image orientation from the centroids of the connected components and a 'search' step to find the actual skew of the image. During initialization, we choose two different sets of points regularly spaced across the the image, one from the left to right and the other from top to bottom. The image orientation is determined from the slope between the two succesive nearest neighbors of each of the points in the chosen set. The search step finds succesive nearest neighbors that satisfy the parameters obtained in the initialization step. The final skew is determined from the slopes obtained in the 'search' step. Unlike other connected component based methods, the proposed method does not require any binarization step that generally precedes connected component analysis. The method works well for scanned documents with complex layout of any skew with a precision of 0.5 degrees.