957 resultados para drug identification
Resumo:
Antibodies specific for the modified nucleoside N6-(delta 2-isopentenyl) adenosine (i6A) were employed to identify the tRNAs containing i6A from an unfractionated tRNA mixture by a nitrocellulose filter binding assay. When radioactive aminoacyl-tRNAs were incubated with i6A-specific antibodies and filtered through nitrocellulose membrane filters, the tRNAs possessing i6A (tRNAtyr and tRNAser) remained on the filters. tRNAarg and tRNAlys which do not contain i6A showed no binding. This finding will be useful as a very simple and rapid assay of such RNAs under a variety of conditions. Purification of i6A containing tRNAs from an unfractionated tRNA mixture was achieved by affinity chromatography of the tRNAs on an i6A antibody-Sepharose column. Nonspecific binding of tRNAs to the column was avoided by the use of purified antibodies.
Resumo:
It is being realized that the traditional closed-door and market driven approaches for drug discovery may not be the best suited model for the diseases of the developing world such as tuberculosis and malaria, because most patients suffering from these diseases have poor paying capacity. To ensure that new drugs are created for patients suffering from these diseases, it is necessary to formulate an alternate paradigm of drug discovery process. The current model constrained by limitations for collaboration and for sharing of resources with confidentiality hampers the opportunities for bringing expertise from diverse fields. These limitations hinder the possibilities of lowering the cost of drug discovery. The Open Source Drug Discovery project initiated by Council of Scientific and Industrial Research, India has adopted an open source model to power wide participation across geographical borders. Open Source Drug Discovery emphasizes integrative science through collaboration, open-sharing, taking up multi-faceted approaches and accruing benefits from advances on different fronts of new drug discovery. Because the open source model is based on community participation, it has the potential to self-sustain continuous development by generating a storehouse of alternatives towards continued pursuit for new drug discovery. Since the inventions are community generated, the new chemical entities developed by Open Source Drug Discovery will be taken up for clinical trial in a non-exclusive manner by participation of multiple companies with majority funding from Open Source Drug Discovery. This will ensure availability of drugs through a lower cost community driven drug discovery process for diseases afflicting people with poor paying capacity. Hopefully what LINUX the World Wide Web have done for the information technology, Open Source Drug Discovery will do for drug discovery. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Systems biology seeks to study biological systems as a whole, by adopting an integrated approach to study and understand the function of biological systems, particularly, the response of such systems to various perturbations. In this article, we focus on the Indian efforts towards systems-level studies of Mycobacterium tuberculosis and its interaction with the host. Availability of a variety of genome-scale experimental data, providing first level `omics' descriptions of the pathogen, render it feasible to study it at a systems level. Various aspects of the pathogen, from metabolic pathways to protein-protein interaction networks have been modelled and simulated, while host-pathogen interactions have been studied experimentally using siRNA-based techniques. These studies have been useful in obtaining a global perspective of the pathogen and its interactions with the host in many ways. For example, significant insights have been gained about different aspects such as proteins essential for bacterial survival, proteins that are highly influential in the network, pathways that are highly connected, host factors responsible for maintaining the TB infection and key factors involved in autophagy and pathogenesis. A rational pipeline developed for drug target identification incorporating analyses of the interactome, reactome, genome, pocketome and the transcriptome is discussed. Finally, exploring host factors as drug targets and insights about the emergence of drug resistance are also discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We present a new approach to spoken language modeling for language identification (LID) using the Lempel-Ziv-Welch (LZW) algorithm. The LZW technique is applicable to any kind of tokenization of the speech signal. Because of the efficiency of LZW algorithm to obtain variable length symbol strings in the training data, the LZW codebook captures the essentials of a language effectively. We develop two new deterministic measures for LID based on the LZW algorithm namely: (i) Compression ratio score (LZW-CR) and (ii) weighted discriminant score (LZW-WDS). To assess these measures, we consider error-free tokenization of speech as well as artificially induced noise in the tokenization. It is shown that for a 6 language LID task of OGI-TS database with clean tokenization, the new model (LZW-WDS) performs slightly better than the conventional bigram model. For noisy tokenization, which is the more realistic case, LZW-WDS significantly outperforms the bigram technique
Resumo:
Of the similar to 4000 ORFs identified through the genome sequence of Mycobacterium tuberculosis (TB) H37Rv, experimentally determined structures are available for 312. Since knowledge of protein structures is essential to obtain a high-resolution understanding of the underlying biology, we seek to obtain a structural annotation for the genome, using computational methods. Structural models were obtained and validated for similar to 2877 ORFs, covering similar to 70% of the genome. Functional annotation of each protein was based on fold-based functional assignments and a novel binding site based ligand association. New algorithms for binding site detection and genome scale binding site comparison at the structural level, recently reported from the laboratory, were utilized. Besides these, the annotation covers detection of various sequence and sub-structural motifs and quaternary structure predictions based on the corresponding templates. The study provides an opportunity to obtain a global perspective of the fold distribution in the genome. The annotation indicates that cellular metabolism can be achieved with only 219 folds. New insights about the folds that predominate in the genome, as well as the fold-combinations that make up multi-domain proteins are also obtained. 1728 binding pockets have been associated with ligands through binding site identification and sub-structure similarity analyses. The resource (http://proline.physics.iisc.ernet.in/Tbstructuralannotation), being one of the first to be based on structure-derived functional annotations at a genome scale, is expected to be useful for better understanding of TB and for application in drug discovery. The reported annotation pipeline is fairly generic and can be applied to other genomes as well.
Resumo:
A hybrid simulation technique for identification and steady state optimization of a tubular reactor used in ammonia synthesis is presented. The parameter identification program finds the catalyst activity factor and certain heat transfer coefficients that minimize the sum of squares of deviation from simulated and actual temperature measurements obtained from an operating plant. The optimization program finds the values of three flows to the reactor to maximize the ammonia yield using the estimated parameter values. Powell's direct method of optimization is used in both cases. The results obtained here are compared with the plant data.
Resumo:
We analyze the AlApana of a Carnatic music piece without the prior knowledge of the singer or the rAga. AlApana is ameans to communicate to the audience, the flavor or the bhAva of the rAga through the permitted notes and its phrases. The input to our analysis is a recording of the vocal AlApana along with the accompanying instrument. The AdhAra shadja(base note) of the singer for that AlApana is estimated through a stochastic model of note frequencies. Based on the shadja, we identify the notes (swaras) used in the AlApana using a semi-continuous GMM. Using the probabilities of each note interval, we recognize swaras of the AlApana. For sampurNa rAgas, we can identify the possible rAga, based on the swaras. We have been able to achieve correct shadja identification, which is crucial to all further steps, in 88.8% of 55 AlApanas. Among them (48 AlApanas of 7 rAgas), we get 91.5% correct swara identification and 62.13% correct R (rAga) accuracy.