943 resultados para driving simulator
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
As robot imitation learning is beginning to replace conventional hand-coded approaches in programming robot behaviors, much work is focusing on learning from the actions of demonstrators. We hypothesize that in many situations, procedural tasks can be learned more effectively by observing object behaviors while completely ignoring the demonstrator's motions. To support studying this hypothesis and robot imitation learning in general, we built a software system named SMILE that is a simulated 3D environment. In this virtual environment, both a simulated robot and a user-controlled demonstrator can manipulate various objects on a tabletop. The demonstrator is not embodied in SMILE, and therefore a recorded demonstration appears as if the objects move on their own. In addition to recording demonstrations, SMILE also allows programing the simulated robot via Matlab scripts, as well as creating highly customizable objects for task scenarios via XML. This report describes the features and usages of SMILE.
Resumo:
We present a new technical simulator for the eLISA mission, based on state space modeling techniques and developed in MATLAB. This simulator computes the coordinate and velocity over time of each body involved in the constellation, i.e. the spacecraft and its test masses, taking into account the different disturbances and actuations. This allows studying the contribution of instrumental noises and system imperfections on the residual acceleration applied on the TMs, the latter reflecting the performance of the achieved free-fall along the sensitive axis. A preliminary version of the results is presented.
Resumo:
Background: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only.Methods: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made.Results: The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures.Conclusions: The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. © 2010 Richter et al; licensee BioMed Central Ltd.
Resumo:
The efficiency of current cargo screening processes at sea and air ports is largely unknown as few benchmarks exists against which they could be measured. Some manufacturers provide benchmarks for individual sensors but we found no benchmarks that take a holistic view of the overall screening procedures and no benchmarks that take operator variability into account. Just adding up resources and manpower used is not an effective way for assessing systems where human decision-making and operator compliance to rules play a vital role. Our aim is to develop a decision support tool (cargo-screening system simulator) that will map the right technology and manpower to the right commodity-threat combination in order to maximise detection rates. In this paper we present our ideas for developing such a system and highlight the research challenges we have identified. Then we introduce our first case study and report on the progress we have made so far.
Resumo:
Executing a cloud or aerosol physical properties retrieval algorithm from controlled synthetic data is an important step in retrieval algorithm development. Synthetic data can help answer questions about the sensitivity and performance of the algorithm or aid in determining how an existing retrieval algorithm may perform with a planned sensor. Synthetic data can also help in solving issues that may have surfaced in the retrieval results. Synthetic data become very important when other validation methods, such as field campaigns,are of limited scope. These tend to be of relatively short duration and often are costly. Ground stations have limited spatial coverage whilesynthetic data can cover large spatial and temporal scales and a wide variety of conditions at a low cost. In this work I develop an advanced cloud and aerosol retrieval simulator for the MODIS instrument, also known as Multi-sensor Cloud and Aerosol Retrieval Simulator (MCARS). In a close collaboration with the modeling community I have seamlessly combined the GEOS-5 global climate model with the DISORT radiative transfer code, widely used by the remote sensing community, with the observations from the MODIS instrument to create the simulator. With the MCARS simulator it was then possible to solve the long standing issue with the MODIS aerosol optical depth retrievals that had a low bias for smoke aerosols. MODIS aerosol retrieval did not account for effects of humidity on smoke aerosols. The MCARS simulator also revealed an issue that has not been recognized previously, namely,the value of fine mode fraction could create a linear dependence between retrieved aerosol optical depth and land surface reflectance. MCARS provided the ability to examine aerosol retrievals against “ground truth” for hundreds of thousands of simultaneous samples for an area covered by only three AERONET ground stations. Findings from MCARS are already being used to improve the performance of operational MODIS aerosol properties retrieval algorithms. The modeling community will use the MCARS data to create new parameterizations for aerosol properties as a function of properties of the atmospheric column and gain the ability to correct any assimilated retrieval data that may display similar dependencies in comparisons with ground measurements.
Resumo:
Allelopathy determines the dynamics of plant species in different environments. Understanding this biological phenomenon could help to develop applications in both natural and agricultural systems. This review summarizes the genetic and environmental characteristics that control the production and release of allelochemicals in agroecosystems. This study highlights the current understanding of the environmental changes caused by allelochemicals and summarizes the knowledge about the mechanisms of action of these compounds. Finally, it reviews novel applications of allelopathy in agricultural production systems, including the role of allelochemicals in consortia and their potential use in no-tillage cropping systems through cover crops or mulches.
Resumo:
Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.
Resumo:
The interactions between host individual, host population, and environmental factors modulate parasite abundance in a given host population. Since adult exophilic ticks are highly aggregated in red deer (Cervus elaphus) and this ungulate exhibits significant sexual size dimorphism, life history traits and segregation, we hypothesized that tick parasitism on males and hinds would be differentially influenced by each of these factors. To test the hypothesis, ticks from 306 red deer-182 males and 124 females-were collected during 7 years in a red deer population in south-central Spain. By using generalized linear models, with a negative binomial error distribution and a logarithmic link function, we modeled tick abundance on deer with 20 potential predictors. Three models were developed: one for red deer males, another for hinds, and one combining data for males and females and including "sex" as factor. Our rationale was that if tick burdens on males and hinds relate to the explanatory factors in a differential way, it is not possible to precisely and accurately predict the tick burden on one sex using the model fitted on the other sex, or with the model that combines data from both sexes. Our results showed that deer males were the primary target for ticks, the weight of each factor differed between sexes, and each sex specific model was not able to accurately predict burdens on the animals of the other sex. That is, results support for sex-biased differences. The higher weight of host individual and population factors in the model for males show that intrinsic deer factors more strongly explain tick burden than environmental host-seeking tick abundance. In contrast, environmental variables predominated in the models explaining tick burdens in hinds.
Resumo:
Environmental factors may drive tick ecology and therefore tick-borne pathogen (TBP) epidemiology, which determines the risk to animals and humans of becoming infected by TBPs. For this reason, the aim of this study was to analyze the influence of environmental factors on the abundance of immature-stage Ixodes ricinus ticks and on the prevalence of two zoonotic I. ricinus-borne pathogens in natural foci of endemicity. I. ricinus abundance was measured at nine sites in the northern Iberian Peninsula by dragging the vegetation with a cotton flannelette, and ungulate abundance was measured by means of dung counts. In addition to ungulate abundance, data on variables related to spatial location, climate, and soil were gathered from the study sites. I. ricinus adults, nymphs, and larvae were collected from the vegetation, and a representative subsample of I. ricinus nymphs from each study site was analyzed by PCR for the detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum DNA. Mean prevalences of these pathogens were 4.0% ± 1.8% and 20.5% ± 3.7%, respectively. Statistical analyses confirmed the influence of spatial factors, climate, and ungulate abundance on I. ricinus larva abundance, while nymph abundance was related only to climate. Interestingly, cattle abundance rather than deer abundance was the main driver of B. burgdorferi sensu lato and A. phagocytophilum prevalence in I. ricinus nymphs in the study sites, where both domestic and wild ungulates coexist. The increasing abundance of cattle seems to increase the risk of other hosts becoming infected by A. phagocytophilum, while reducing the risk of being infected by B. burgdorferi sensu lato. Controlling ticks in cattle in areas where they coexist with wild ungulates would be more effective for TBP control than reducing ungulate abundance.
Resumo:
The invention relates to a variable-spectrum solar simulator for characterising photovoltaic systems. The simulator can be used to obtain a spectrum adjusted to the solar spectrum, both for a standard spectrum or a real spectrum adjusted to local irradiation conditions. The simulator also allows the spatial-angular characteristics of the sun to be reproduced. The invention comprises: a broad-spectrum light source, the flux from which is emitted through an aperture; an optical system which collimates the primary source; a system which disperses the beam chromatically; an optical system which forms an image of the dispersed primary source at a given position, at which a spatial mask is placed in order to filter the received irradiance spectrally; an optical system which captures the filtered spectrum and returns, mixes and concentrates same in a secondary source with the desired spectral, angular, and spatial characteristics; an optical system which collimates the secondary source such that it reproduces the angular characteristics of the sun; and a control system.
Resumo:
This paper exposes the diachronic (historical overview) of Andragogy (or Adult Education) and its introduction as a discipline in the context of university education. Based on the andragogical principles of the adult thought process and the work experience, this study sets out Adult Education as an education option to be implemented in higher education, in Costa Rica, to develop cognitive and meta-cognitive competencies in the university students, in the different academic areas simultaneously, by reproducing the Socratic maieutics, which is structured within the Kolb’s experiential learning cycle.