988 resultados para disulphide bonds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modes of binding of adenosine 2'-monophosphate (2'-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2'-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites--(1) The primary base binding site where the guanine of 2'-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3'-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2'-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2'-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1-2'-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2'-AMP and 2'-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme-2'-GMP complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five tartrate-amine complexes have been studied in terms of crystal packing and hydrogen bonding frameworks. The salts are 3-bromoanilinium-L-monohydrogen tartrate 1, 3-fluoroanilinium-D-dibenzoylmonohydrogen tartrate 2, 1-nonylium-D-dibenzoylmonohydrogen tartrate 3, 1 -decylium-D-dibenzoylmonohydrogen tartrate 4, and 1,4-diaminobutanium-D-dibenzoyl tartrate trihydrate 5. The results indicate that there are no halogen-halogen interactions in the haloaromatic-tartrate complexes. The anionic framework allows accomodation of ammonium ions that bear alkyl chain residues of variable lengths. The long chain amines in these structures remain disordered while the short chain amines form multidirectional hydrogen bonds on either side.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of the dehydro octapeptide Boc-Val-Delta Phe-Phe-Ala-Leu-Ala-Delta Phe-Leu-OH has been determined to atomic resolution by X-ray crystallographic methods. The crystals grown by slow evaporation of peptide solution in methanol/water are orthorhombic, space group P2(1)2(1)2(1). The unit cell parameters are a = 8.404(3), b = 25.598(2) and c = 27.946(3) Angstrom, Z = 4. The agreement factor is R = 7.58% for 3636 reflections having (\F-o\) greater than or equal to 3 sigma (\F-o\). The peptide molecule is characterised by a 3(10)-helix at the N-terminus and a pi-turn at the C-terminus. This conformation is exactly similar to the helix termination features observed in proteins. The pi-turn conformation observed in the octapeptide is in good agreement with the conformational features of pi-turns seen in some proteins. The alpha(L)-position in the pi-turn of the octapeptide is occupied by Delta Phe(7), which shows that even bulky residues can be accommodated in this position of the pi-turns. In proteins, it is generally seen that alpha(L)-position is occupied by glycine residue. No intermolecular head-to-tail hydrogen bonds are observed in solid state structure of the octapeptide. A water molecule located in the unit cell of the peptide molecule is mainly used to hold the peptide molecule together in the crystal. The conformation observed for the octapeptide might be useful to understand the helix termination and chain reversal in proteins and to construct helix terminators for denovo protein design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intramolecular gamma-hydrogen abstraction reactions were examined in pentane-2-one and 2-methyl-1-pentene in their lowest triplet states using the AM1 semi-empirical molecular orbital method with the complete geometry optimization in the unrestricted Hartree-Fock frame. The results reveal that the oxygen atom of the carbonyl group and the end carbon atom of the olefinic bond acquire high free valence and spin density indices in their respective lowest triplet states, leading to abstraction of hydrogen from the gamma-position relative to the carbonyl and olefinic bonds. The theoretical energy profiles fit with a polynomial and the probability of tunneling of hydrogen was estimated by the WKB (Wentzel, Kramer and Brillouin) method. The results, after thermal averaging of the rate constants, reveal that tunneling of hydrogen is significant at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bonding in buckminsterfullerene, C60, can be described in terms of a unique canonical representation in which all six membered rings have a benzenoid Kekule structure while the pentagons are all made of exclusively single bonds. The corresponding valence bond structure reflects the full symmetry of the molecule and is consistent with the observed bond length variations. Computational support for the bonding description is provided using localized MO's obtained at the MNDO level. The requirement of benzenoid structures for all the hexagons can be used as a criterion of stability of fullerenes which complements the pentagon isolation rule. A convenient two-dimensional representation of the fullerene structures incorporating the above bonding description is suggested, especially for use in mechanistic discussions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C10H10O4, M(r) = 194.19, monoclinic, P2(1)/c, a = 7.089 (1), b = 11.361 (1), c = 11.656 (1) angstrom, beta = 100.45 (3)-degrees, V = 922.92 (1) angstrom 3, Z = 4, D(m) = 1.410 (5), D(x) = 1.397 Mg m-3, lambda(Cu K-alpha) = 1.5418 angstrom, mu(Cu K-alpha) = 0.89 mm-1, T = 300 K, F(000) = 408, final R = 0.057 for 1701 observed reflections. The molecule is almost planar, with O(9) and O(12) of the acetyl groups deviating by 0.074 (1) and 0.071 (2) angstrom from the mean plane of the benzene ring. The bond lengths and bond angles of the benzene ring are normal. There are intramolecular hydrogen bonds between O(9) and H(14) and between O(12) and H(13); there are no intermolecular hydrogen bonds. The molecules are packed in layers parallel to the ac plane and are held together essentially by van der Waals interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C13H12F3NO2, M(r) = 271.2, triclinic, P1BAR, a = 5.029 (2), b = 7.479 (2), c = 17.073 (5) angstrom, alpha = 97.98 (2), beta = 95.54 (3), gamma = 103.62 (3)-degrees, V = 612.4 (4) angstrom 3, Z = 2, D(m) = 1.463, D(x) = 1.471 g cm-3, lambda(Mo K-alpha) = 0.71069 angstrom, mu = 1.23 cm-1, F(000) = 280, T = 298 K, final R value is 0.041 for 2047 observed reflections with \F(omicron)\ greater-than-or-equal-to 6-sigma(\F(omicron)\). The N-C(sp2) bond length is 1.356 (2) angstrom. The N and C atoms of the ethylamino group deviate by < 0.15 angstrom from the plane of the aromatic ring. Short intramolecular contacts, C(3)...F(17) 2.668 (3) angstrom [H(3)...F(17) 2.39 (2) angstrom, C(3)-H(C3)...F(17) 98 (1)-degrees], C(5)...F(18) 3.074 (3) and C(5)...F(19) 3.077 (3) angstrom exist in the structure. The crystal structure is stabilized by intermolecular N-H...O hydrogen bonds with N(12)-H(N12) 0.79 (3), H(N12)...O(11)' 2.36 (3), N(12)...O(11)' (x - 1, y + 1, z) 3.105 (3) angstrom and N(12)-H(N12)...O(11)' 155 (2)-degrees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Fe(N2H5)2(H2O)2Cl2].Cl2, M(r) = 299.65, monoclinic, P2(1)/c, a = 8.027 (1), b = 5.725 (2), c = 11.430 (2) angstrom, beta = 97.08 (1)-degrees, V = 521.3 (2) angstrom 3, Z = 2, D(m) = 1.92, D(x) = 1.910 g cm-3, lambda(Mo K-alpha) = 0.71069 angstrom, mu = 24.5 cm-1, F(000) = 304, T = 295 K, final R = 0.0242 and wR = 0.0292 for 1411 significant [F(o) > 5.0-sigma(F(o))] reflections. The crystal contains discrete Cl- ions and complex [Fe(N2H5)2(H2O)2Cl2]2+ cations. In the complex cation, the Fe atom is bonded to two hydrazinium cations, two Cl atoms and two water molecules. The coordinated atoms are trans to each other. The ions are connected by both N-H...Cl and O-H...Cl type hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C18H17NO3, M r = 295"34, monoclinic, C2/c, a = 11.689 (2), b = 22.934 (4), c = 11.592 (2) A, fl=100.16(3) ° , V =3058.8(8) A 3, Z=8, D,n= 1.30 (5), Dx = 1.28 Mg m -3, A(Mo Ka) = 0.7107 A, tz(Mo Ka) = 0.094 mm- 1, F(000) = 1248, T = 300 K, final R = 0.046 for 1849 observed reflections [I > 30"(/)]. The indole nucleus is slightly bent along the C(8)---C(9) bond. The phenyl ring connected to the indole moiety is rotated about the C(3)---C(10) bond by 45.8 (3) °. The carboxyl group makes a dihedral angle of 8.1 (4) ° with the mean plane of the indole moiety. Centrosymmetrically related pairs of molecules are linked through hydrogen bonds across the centre of symmetry and form dimers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C17H17N3O2, M(r) = 295.34, orthorhombic, P2(1)2(1)2(1), a = 7.659 (1), b = 12.741 (1), c = 15.095 (1) angstrom, V = 1473.19 (2) angstrom 3, Z = 4, D(m) = 1.33, D(x) = 1.32 Mg m-3, lambda(Cu K-alpha) = 1.5418 angstrom, mu = 0.68 mm-1, F(000) = 624, T = 295 K, R = 0.031 for 1549 unique observed reflections with I > 2.5-sigma(I). The seven-membered heterocyclic ring adopts a boat conformation flattened at the nitroso end of the ring. The substituent phenyl rings occupy pseudo-axial positions and the nitroso group is coplanar with the C(2), N(1), C(7) plane of the central ring. The crystal structure is stabilized by intermolecular N-H...O and weak C-H...O hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteriorhodopsin has been the subject of intense study in order to understand its photochemical function. The recent atomic model proposed by Henderson and coworkers based on electron cryo-microscopic studies has helped in understanding many of the structural and functional aspects of bacteriorhodopsin. However, the accuracy of the positions of the side chains is not very high since the model is based on low-resolution data. In this study, we have minimized the energy of this structure of bacteriorhodopsin and analyzed various types of interactions such as - intrahelical and interhelical hydrogen bonds and retinal environment. In order to understand the photochemical action, it is necessary to obtain information on the structures adopted at the intermediate states. In this direction, we have generated some intermediate structures taking into account certain experimental data, by computer modeling studies. Various isomers of retinal with 13-cis and/or 15-cis conformations and all possible staggered orientations of Lys-216 side chain were generated. The resultant structures were examined for the distance between Lys-216-schiff base nitrogen and the carboxylate oxygen atoms of Asp-96 - a residue which is known to reprotonate the schiff base at later stages of photocycle. Some of the structures were selected on the basis of suitable retinal orientation and the stability of these structures were tested by energy minimization studies. Further, the minimized structures are analyzed for the hydrogen bond interactions and retinal environment and the results are compared with those of the minimized rest state structure. The importance of functional groups in stabilizing the structure of bacteriorhodopsin and in participating dynamically during the photocycle have been discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The products of the reaction of pyridinium poly(hydrogen fluoride), PPHF, with KIO3, Na2SnO3, NaBiO3, K2CrO4, Na2MoO4 and Na2WO4 were KIO2F2; Na2SnF6; NaHF2, BiF3; K3CrF6, KHF2, (PyH)(3)CrF6; NaHF2, (PyH)(2)MoO2F4.2NaHF(2); and (PyH)(2)WO2F4.2NaHF(2), respectively, while KClO3, KBrO3 and KlO(4) react with complete decomposition to form KHF2 as the fluorinated product. This differential reactivity and mode of reaction has been discussed in terms of the oxidation state of the central atom, the nature and strength of the bonds and the complex behaviour of the formed intermediate or fluorinated products that undergo complexation or solvation with pyridine and/or hydrogen fluoride.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An attempt is made to draw a profile of adenosine triphosphate (ATP) and to project its many actions. The amazing versatility of its participation in a number of synthetic reactions lies in the oligophosphate structure. Many proteins that use ATP have conserved binding 'P-loop' but this gives no clue what makes it so special. The energy transducing reactions leading to synthesis of the terminal phosphodiester had at least three strategies. Of these, direct dehydration and transfer of inorganic phosphate using respiratory energy operate through mechano-coupling in a multisubunit protein. This tripartite, knob-stalk-base structure provides a novel mechanism of rotational catalysis and the tiniest molecular motor, All the reactions occur in concert with no sign of energized chemical intermediate. With the new knowledge on the crystal structure of F-1-ATPase, proton translocation needs a relook. An alternative perspective is emerging on energy being received and stored in polypeptide structure by breaking hydrogen bonds. Membrane serves the purpose of mobilizing the constituent proteins and also as a potential energy carrier of proteins with little loss of energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiogenin belongs to the Ribonuclease superfamily and has a weak enzymatic activity that is crucial for its biological function of stimulating blood vessel growth. Structural studies on ligand bound Angiogenin will go a long way in understanding the mechanism of the protein as well as help in designing drugs against it. In this study we present the first available structure of nucleotide ligand bound Angiogenin obtained by computer modeling. The importance of this study in itself notwithstanding, is a precursor to modeling a full dinucleotide substrate onto Angiogenin. Bovine Angiogenin, the structure of which has been solved at a high resolution, was earlier subjected to Molecular Dynamics simulations for a nanosecond. The MD structures offer better starting points for docking as they offer lesser obstruction than the crystal structure to ligand binding. The MD structure with the least serious short contacts was modeled to obtain a steric free Angiogenin - 3' mononucleotide complex structure. The structures were energetically minimized and subjected to a brief spell of Molecular Dynamics. The results of the simulation show that all the li,ligand-Angiogenin interactions and hydrogen bonds are retained, redeeming the structure and docking procedure. Further, following ligand - protein interactions in the case of the ligands 3'-CMP and 3'-UMP we were able to speculate on how Angiogenin, a predominantly prymidine specific ribonuclease prefers Cytosine to Uracil in the first base position.