983 resultados para dissociative recombination rate
Resumo:
The forward scattering light (FSL) received by the detector can cause uncertainties in turbidity measurement of the coagulation rate of colloidal dispersion, and this effect becomes more significant for large particles. In this study, the effect of FSL is investigated on the basis of calculations using the T-matrix method, an exact technique for the computation of nonspherical scattering. The theoretical formulation and relevant numerical implementation for predicting the contribution of FSL in the turbidity measurement is presented. To quantitatively estimate the degree of the influence of FSL, an influence ratio comparing the contribution of FSL to the pure transmitted light in the turbidity measurement is introduced. The influence ratios evaluated under various parametric conditions and the relevant analyses provide a guideline for properly choosing particle size, measuring wavelength to minimize the effect of FSL in turbidity measurement of coagulation rate.
Resumo:
IEECAS SKLLQG
Resumo:
To evaluate the radiative electron capture for the collisions of U89+ ion with N-2, radiative recombination cross sections and the corresponding emitted photon energies are calculated from the ground state 1s(2)2s to 1s(2)2snl(j) (2 <= n <= 9, 0 <= l <= 6) using the newly developed relativistic radiative recombination program RERR06 based on the multiconfiguration Dirac-Fock method. The x-ray spectra for radiative electron capture in the collision have been obtained by convolving the radiative recombination cross sections and the Compton profile of N2. Good agreement is found between the calculated and experimental spectra. In addition, the transition energy levels and probabilities among the 147 levels from the captured 1s(2)2snl(j) have been calculated. From the calculated results, radiative decay cascade processes followed by the radiative electron capture have also been studied with the help of multistep model and coupled rate equations, respectively. The present results not only make us understand the details of the radiative electron captures and the radiative decay cascade spectra in the experiment but also show a more efficient way to obtain the cascade spectra. Finally, the equivalence between the multistep model and coupled rate equations has been shown under a proper condition and the latter can hopefully be extended to investigate other cascade processes.
Resumo:
Charge transfer due to collisions of ground state O3+ (2s(2)2p P-2) ions with molecular hydrogen is investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method, and electronic and vibrational state-selective cross sections along with the corresponding differential cross sections are calculated for projectile energies of 100, 500, 1000 and 5000 eV/u at the orientation angles of 25 degrees,45 degrees and 89 degrees. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations were obtained with the spin-coupled valence-bond approach. The infinite order sudden approximation (IOSA) and the vibrational sudden approximation (VSA) are utilized to deal with the rotation of H-2 and the coupling between the electron and the vibration of H-2. It is found that the distribution of vibrationally resolved cross sections with the vibrational quantum number upsilon' of H-2(+) (upsilon') varies with the increment of the projectile energy; and the electronic and vibrational stateselective differential cross sections show similar behaviors: there is a highest platform within a very small scattering angle, beyond which the differential cross sections decrease as the scattering angle increases and lots of oscillating structures appear, where the scattering angle of the first structure decreases as E-P(-1/2) with the increment of the projectile energy E-P; and the structure and amplitude of the differential cross sections are sensitive to the orientation of molecule H-2, which provides a possibility to identify the orientations of molecule H-2 by the vibrational state-selective differential scattering processes.
Resumo:
为了在CSRm的电子冷却器上进行辐射复合以及双电子复合实验,需要探测能量小于4MeV/u的离子,因此设计了新的置于超高真空环境的CsI(Tl)闪烁探测器,探测器采用的光电倍增管为R7525(Hamamatsu)。介绍了新闪烁探测器的结构,并对其进行了性能测试。测试结果表明,该探测器对高、低能离子均有良好的响应,探测器的信号十分明显。探测器的最高计数率可以达到106ions/s,并且探测器附近的真空度可达10-10Pa量级,能够满足辐射复合与双电子复合实验以及储存环对真空的要求,为今后在CSRm上进行复合实验打下了良好的基础。
Resumo:
This paper calculates the electron impact excitation rate coefficients from the ground term 2s(2)2p(2) P-3 to the excited terms of the 2s(2)2p(2), 2s2p(3), 2s(2)2p3s, 2s(2)2p3p, and 2s(2)2p3d configurations of N II. In the calculations, rnulticonfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.