937 resultados para discrete orthogonal polynomials
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Efeitos do strike das estruturas geológicas de duas dimensões nas pseudos-seções de IP resistividade
Resumo:
Os levantamentos de IP-resistividade efetuados na Serra dos Carajás não foram executados ortogonalmente às estruturas geológicas, pois utilizaram linhas anteriormente abertas pelas equipes de geoquímica. Este fato motivou este estudo teórico da influência da direção das linhas de medidas de IP-resistividade em relação ao "strike" da estrutura. Foi usado o programa de elementos finitos de Rijo (1977), desenvolvido para levantamentos perpendiculares às estruturas com as adaptações necessárias. A modificação principal foi na rotina de transformação inversa de Fourier. Para o caso simples dos levantamentos perpendiculares, a transformada inversa é uma integral discreta com apenas sete pontos. No entanto, para as medidas obliquas, o integrando é oscilatório, e portanto, a integral a ser calculada é mais complexa. Foi adaptado um método apresentado por Ting e Luke (1981), usando dezoito pontos em cada integração. Foi constatado que o efeito da direção da linha em relação ao "strike" é desprezível para ângulos maiores que 60 graus. Para ângulos menores, o efeito consiste no alongamento da anomalia, com pequenas alterações em seu centro. Não há uma maneira simples de compensar este efeito com mudanças nos parâmetros do modelo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this research was to estimate (co) variance functions and genetic parameters for body weight in Colombian buffalo populations using random regression models with Legendre polynomials. Data consisted of 34,738 weight records from birth to 900 days of age from 7815 buffaloes. Fixed effects in the model were contemporary group and parity order of the mother. Random effects were direct and maternal additive genetic, as well as animal and maternal permanent environmental effects. A cubic orthogonal Legendre polynomial was used to model the mean curve of the population. Eleven models with first to sixth order polynomials were used to describe additive genetic direct and maternal effects, and animal and maternal permanent environmental effects. The residual was modeled considering five variance classes. The best model included fourth and sixth order polynomials for direct additive genetic and animal permanent environmental effects, respectively, and third-order polynomials for maternal genetic and maternal permanent environmental effects. The direct heritability increased from birth until 120 days of age (0.32 +/- 0.05), decreasing thereafter until one year of age (0.18 +/- 0.04) and increased again, reaching 0.39 +/- 0.09, at the end of the evaluated period. The highest maternal heritability estimates (0.11 +/- 0.05), were obtained for weights around weaning age (weaning age range is between 8 and 9.5 months). Maternal genetic and maternal permanent environmental variances increased from birth until about one year of age, decreasing at later ages. Direct genetic correlations ranged from moderate (0.60 +/- 0.060) to high (0.99 +/- 0.001), maternal genetic correlations showed a similar range (0.41 +/- 0.401 and 0.99 +/- 0.003), and all of them decreased as time between weighings increased. Direct genetic correlations suggested that selecting buffalos for heavier weights at any age would increase weights from birth through 900 days of age. However, higher heritabilities for direct genetic weights effects after 600 days of age suggested that selection for these effects would be more effective if done during this age period. A greater response to selection for maternal ability would be expected if selection used maternal genetic predictions for weights near weaning. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the scattering equations recently proposed by Cachazo, He and Yuan in the special kinematics where their solutions can be identified with the zeros of the Jacobi polynomials. This allows for a non-trivial two-parameter family of kinematics. We present explicit and compact formulas for the n-gluon and n-graviton partial scattering amplitudes for our special kinematics in terms of Jacobi polynomials. We also provide alternative expressions in terms of gamma functions. We give an interpretation of the common reduced determinant appearing in the amplitudes as the product of the squares of the eigenfrequencies of small oscillations of a system whose equilibrium is the solutions of the scattering equations.