987 resultados para diode dosimetry
Resumo:
This work shows the luminescence properties of a rare-earth organic complex, the Tb(ACAC)(3)phen. The results show the (5)D(4)->(7)F(3,4,5,6) transitions with no influence of the ligand. The photoluminescence excitation spectrum is tentatively interpreted by the ligands absorption. An organic light emitting diode (CLED) was made by thermal evaporation using TPD (N,N`-bis(3-methylphenyl)N,N`-diphenylbenzidine) and Alq3 (aluminum-tris(8-hydroxyquinoline)) as hole and electron transport layers, respectively. The emission reproduces the photoluminescence spectrum of the terbium complex at room temperature, with Commission Internationale de l`Eclairage - CIE (x,y) color coordinates of (0.28,0.55). No presence of any bands from the ligands was observed. The potential use of this compound in efficient devices is discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles. Concerning a mass percentage of silver below 0.1%, the nanocomposites are homogeneous, and there is no particle aggregation. As the mass percentage of silver is increased, the system becomes unstable, and there is particle flocculation with subsequent segregation of the alanine crystals. The nanocomposites have been analyzed by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and they have been tested as radiation detectors by means of electron spin resonance (ESR) spectroscopy in order to detect the paramagnetic centers created by the radiation. In fact, the sensitivity of the radiation detectors is optimized in the case of systems containing small particles (30 nm) that are well dispersed in the alanine matrix. As the agglomeration increases, particle growth (up to 1.5 mu m) and segregation diminish the sensitivity. In conclusion, nanostructured materials can be used for optimization of alanine sensitivity, by taking into account the influence of the particles size of the silver nanoparticles on the detection properties of the alanine radiation detectors, thus contributing to the construction of small-sized detectors.
Resumo:
The aim of this study was to determine whether image artifacts caused by orthodontic metal accessories interfere with the accuracy of 3D CBCT model superimposition. A human dry skull was subjected three times to a CBCT scan: at first without orthodontic brackets (T1), then with stainless steel brackets bonded without (T2) and with orthodontic arch wires (T3) inserted into the brackets' slots. The registration of image surfaces and the superimposition of 3D models were performed. Within-subject surface distances between T1-T2, T1-T3 and T2-T3 were computed and calculated for comparison among the three data sets. The minimum and maximum Hausdorff Distance units (HDu) computed between the corresponding data points of the T1 and T2 CBCT 3D surface images were 0.000000 and 0.049280 HDu, respectively, and the mean distance was 0.002497 HDu. The minimum and maximum Hausdorff Distances between T1 and T3 were 0.000000 and 0.047440 HDu, respectively, with a mean distance of 0.002585 HDu. In the comparison between T2 and T3, the minimum, maximum and mean Hausdorff Distances were 0.000000, 0.025616 and 0.000347 HDu, respectively. In the current study, the image artifacts caused by metal orthodontic accessories did not compromise the accuracy of the 3D model superimposition. Color-coded maps of overlaid structures complemented the computed Hausdorff Distances and demonstrated a precise fusion between the data sets.
Resumo:
Introduction: In this study, we evaluated the effects of a low-level laser on bone regeneration in rapid maxillary expansion procedures. Methods: Twenty-seven children, aged 8 to 12 years, took part in the experiment, with a mean age of 10.2 years, divided into 2 groups: the laser group (n=14), in which rapid maxillary expansion was performed in conjunction with laser use, and the no-laser group (n=13), with rapid maxillary expansion only. The activation protocol of the expansion screw was 1 full turn on the first day and a half turn daily until achieving overcorrection. The laser type used was a laser diode (TWIN Laser; MMOptics, Sao Carlos, Brazil), according to the following protocol: 780 nm wavelength, 40 mW power, and 10 J/cm(2) density at 10 points located around the midpalatal suture. The application stages were 1 (days 1-5 of activation), 2 (at screw locking, on 3 consecutive days), 3, 4, and 5 (7, 14, and 21 days after stage 2). Occlusal radiographs of the maxilla were taken with the aid of an aluminum scale ruler as a densitometry reference at different times: T1 (initial), T2 (day of locking), T3 (3-5 days after T2), T4 (30 days after T3), and T5 (60 days after T4). The radiographs were digitized and submitted to imaging software (Image Tool; UTHSCSA, San Antonio, Tex) to measure the optic density of the previously selected areas. To perform the statistical test, analysis of covariance was used, with the time for the evaluated stage as the covariable. In all tests, a significance level of 5% (P<0.05) was adopted. Results: From the evaluation of bone density, the results showed that the laser improved the opening of the midpalatal suture and accelerated the bone regeneration process. Conclusions: The low-level laser, associated with rapid maxillary expansion, provided efficient opening of the midpalatal suture and influenced the bone regeneration process of the suture, accelerating healing. (Am J Orthod Dentofacial Orthop 2012;141:444-50)
Resumo:
The aims of this in vivo study were to compare the effectiveness and color stability of at-home and in-office bleaching techniques and to evaluate whether the use of light sources can alter bleaching results. According to preestablished criteria, 40 patients were selected and randomly divided into four groups according to bleaching treatment: (1) at-home bleaching with 10% carbamide peroxide, (2) in-office bleaching with 35% hydrogen peroxide (HP) without a light source, (3) in-office bleaching with 35% HP with quartz-tungsten-halogen light, and (4) in-office bleaching with 35% HP with a light-emitting diode/laser. Tooth shade was evaluated using the VITA Classical Shade Guide before bleaching as well as after the first and third weeks of bleaching. Tooth shade was evaluated again using the same guide 1 and 6 months after the completion of treatment. The shade guide was arranged to yield scores that were used for statistical comparison. Statistical analysis using the Kruskal-Wallis test showed no significant differences among the groups for any time point (P > .01). There was no color rebound in any of the groups. The bleaching techniques tested were equally effective. Light sources are unnecessary to bleach teeth. (Int J Periodontics Restorative Dent 2012;32:303-309.)
Resumo:
This study evaluated color change, stability, and tooth sensitivity in patients submitted to different bleaching techniques. Material and methods: In this study, 48 patients were divided into five groups. A half-mouth design was conducted to compare two in-office bleaching bleaching techniques (with and without light activation): G1: 35% hydrogen peroxide (HP) (Lase Peroxide - DMC Equipments, Sao Carlos, SP, Brazil) + hybrid light (HL) (LED/Diode Laser, Whitening Lase II DMC Equipments, Sao Carlos, SP, Brazil); G2: 35% HP; G3: 38% HP (X-traBoost - Ultradent, South Jordan UT, USA) + HL; G4: 38% HP; and G5: 15% carbamide peroxide (CP) (Opalescence PF - Ultradent, South Jordan UT, USA). For G1 and G3, HP was applied on the enamel surface for 3 consecutive applications activated by HL. Each application included 3x3' HL activations with 1' between each interval; for G2 and G4, HP was applied 3x15' with 15' between intervals; and for G5, 15% CP was applied for 120'/10 days at home. A spectrophotometer was used to measure color change before the treatment and after 24 h, 1 week, 1, 6, 12, 18 and 24 months. A VAS questionnaire was used to evaluate tooth sensitivity before the treatment, immediately following treatment, 24 h after and finally 1 week after. Results: Statistical analysis did not reveal any significant differences between in-office bleaching with or without HL activation related to effectiveness; nevertheless the time required was less with HL. Statistical differences were observed between the result after 24 h, 1 week and 1, 6, 12, 18 and 24 months (integroup). Immediately, in-office bleaching increased tooth sensitivity. The groups activated with HL required less application time with gel. Conclusion: All techniques and bleaching agents used were effective and demonstrated similar behaviors.
Resumo:
A new methodology for the synthesis of tunable patch filters is presented. The methodology helps the designer to perform a theoretical analysis of the filter through a coupling matrix that includes the effect of the tuning elements used to tune the filter. This general methodology accounts for any tuning parameter desired and was applied to the design of a tunable dual-mode patch filter with independent control of center frequency and bandwidth (BW). The bandpass filter uses a single triangular resonator with two etched slots that split the fundamental degenerate modes and form the filter passband. Varactor diodes assembled across the slots are used to vary the frequency of each degenerate fundamental mode independently, which is feasible due to the nature of the coupling scheme of the filter. The varactor diode model used in simulations, their assembling, the dc bias configuration, and measured results are presented. The theory results are compared to the simulations and to measurements showing a very good agreement and validating the proposed methodology. The fabricated filter presents an elliptic response with 20% of center frequency tuning range around 3.2 GHz and a fractional BW variation from 4% to 12% with low insertion loss and high power handling with a 1-dB compression point higher than +14.5 dB.
Resumo:
Magnetic iron oxide nanoparticles (magnetite) (MNPs) were prepared using different organic and inorganic bases. Strong inorganic base (KOH) and organic bases (NH4OH and 1,4-diazabicyclo[2.2.2]octane (DABCO)) were used in the syntheses of the MNPs. The MNPs were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FT-IR) and magnetization measurements. MNPs prepared with strong inorganic base yielded an average size of 100 nm, whereas the average size of the MNPs prepared with the organic bases was 150 nm. The main competitive phase for MNPs prepared with the strong inorganic and organic bases was maghemite; however, syntheses with KOH yielded a pure magnetite phase. The transfection study performed with the MNPs revealed that the highest transfection rate was obtained with the MNPs prepared with KOH (74%). The correlation between the magnetic parameters and the transfection ratio without transfection agents indicated that MNPs prepared with KOH were a better vector for possible applications of these MNPs in biomedicine. HeLa cells incubated with MNP-KOH at 10 mu g/mL for 24 and 48 h exhibited a decrease in population in comparison with the control cells and it was presumably related to the toxicity of the MNPs. However, the cells incubated with MNP-KOH at 50 and 100 mu g/mL presented a very small difference in the viability between the cell populations studied at 24 and 48 h. These data illustrate the viability of HeLa cells treated with MNP-KOH and suggest the potential use of these MNPs in biomedical applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IFEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated optical and transport properties of the molecular structure 2,3,4,5-tetraphenyl-1-phenylethynyl-cyclopenta-2,4-dienol experimentally and theoretically. The optical spectrum was calculated using Hartree-Fock-intermediate neglect of differential overlap-configuration interaction model. The experimental photoluminescence spectrum showed a peak around 470nm which was very well described by the modeling. Electronic transport measurements showed a diode-like effect with a strong current rectification. A phenomenological microscopic model based on non-equilibrium Green's function technique was proposed and a very good description electronic transport was obtained. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767457]
Resumo:
To boost crop yield, sugarcane growers are using increasing amounts of pesticides to combat insects and weeds. But residues of these compounds can pollute water resources, such as lakes, rivers and aquifers. The present paper reports the results of a study of water samples from the Feijao River, which is the source of drinking water for the city of Sao Carlos, Sao Paulo, Brazil. The samples were evaluated for the presence of four leading pesticides - ametryn, atrazine, diuron and fipronil - used on sugarcane, the dominant culture in the region. The samples were obtained from three points along the river: the headwaters, along the middle course of the river and just before the municipal water intake station. The pesticides were extracted from the water samples by solid-phase extraction (SPE) and then analyzed by liquid chromatography with diode array detection (LC-DAD). The analytical method was validated by traditional methods, obtaining recovery values between 90 and 95%, with precision deviations inferior to 2.56%, correlation coefficients above 0.99 and detection and quantification limits varying from 0.02 to 0.05 mg L-1 and 0.07 to 0.17 mg L-1, respectively. No presence of residues of the pesticides was detected in the samples, considering the detection limits of the method employed.
Resumo:
This review reports the Brazilian history in astrobiology, as well as the first delineation of a vision of the future development of the field in the country, exploring its abundant biodiversity, highly capable human resources and state-of-the-art facilities, reflecting the last few years of stable governmental investments in science, technology and education, all conditions providing good perspectives on continued and steadily growing funding for astrobiology-related research. Brazil is growing steadily and fast in terms of its worldwide economic power, an effect being reflected in different areas of the Brazilian society, including industry, technology, education, social care and scientific production. In the field of astrobiology, the country has had some important landmarks, more intensely after the First Brazilian Workshop on Astrobiology in 2006. The history of astrobiology in Brazil, however, is not so recent and had its first occurrence in 1958. Since then, researchers carried out many individual initiatives across the country in astrobiology-related fields, resulting in an ever growing and expressive scientific production. The number of publications, including articles and theses, has particularly increased in the last decade, but still counting with the effort of researchers working individually. That scenario started to change in 2009, when a formal group of Brazilian researchers working with astrobiology was organized, aiming at congregating the scientific community interested in the subject and to promote the necessary interactions to achieve a multidisciplinary work, receiving facilities and funding from the University de Sao Paulo and other funding agencies. Received 29 February 2012, accepted 17 May 2012, first published online 18 July 2012
Resumo:
Purpose: To evaluate the dosimetric characteristics of a new formulation of MAGIC gel, called MAGIC-f, which contains the addition of 3.3% formaldehyde, resulting in a gel with increased thermal stability. Methods: MAGIC-f gel was prepared and stored in hermetically sealed plastic containers. After irradiation, magnetic resonance images (MRI) were acquired to evaluate dose and dose distribution. Dosimetric characterization was performed by means of depth dose measurements, dose response sensitivity and linearity, temporal stability, energy and dose rate dependence, dose integration using sequential beams, temperature influence during MRI acquisition and dose distribution integrity. Results: MAGIC-f depth dose measurements are compatible with the dosimetric table data within +/- 4% uncertainty. The dosimeter's R-2 response varies linearly with dose at least from 0 to 6 Gy. The time-course of the sensitivity of the dosimeter following irradiation, indicated stabilization after 2 weeks. The dosimeter's response to irradiation was altered by 6% when increasing the energy from cobalt beams to 10 MV beams. The dose rate dependence of this new formulation of gel dosimeter is small: less than 2.5% for a variation from 200 to 500 cGy/min, and the dependence with the fractionation scheme is about 50% smaller than for standard MAGIC gel, The dependence on scanning temperature was also verified, and the integrity of the dose distribution was confirmed for a period of 90 days. Conclusions: The results demonstrate the applicability of this new dosimeter in tridimensional dose distribution measurements. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Charge transport and shelf-degradation of MEH-PPV thin-films were investigated through stationary (e.g. current versus voltage - JxV) and transient (e.g. Time-of-Flight - ToF, Dark-Injection Space-Charge-Limited Current - DI-SCLC, Charge Extraction by Linearly Increasing Voltage - CELN) current techniques. Charge carrier mobility in nanometric films was best characterized through JxV and DI-SCLC. It approaches 10(-6) cm(2)Ns under a SCLC regime with deep traps for light-emitting diode applications. ToF measurements performed on micrometric layers (i.e. - 3 mu m) confirmed studies in 100 nm-thick films as deposited in OLEDs. All results were comparable to a similar poly(para-phenylene vinylene) derivative, MDMO-PPV. Electrical properties extracted from thin-film transistors demonstrated mobility dependence on carrier concentration in the channel (similar to 10(-7)-10(-4) cm(2)/Vs). At low accumulated charge levels and reduced free carrier concentration, a perfect agreement to the previously cited techniques was observed. Degradation was verified through mobility reduction and changes in trap distribution of states. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Intensity of the 150 degrees C thermoluminescence peak of beta-irradiated carbonated synthetic A-type hydroxyapatite is approximately 12 times higher than that of the noncarbonated material. Deconvolution of the glow curve showed that this peak is a result of a trap distribution. An attempt was made to relate this thermoluminescence peak enhanced by carbonation with the ESR signal of the CO2- radical in natural or synthetic hydroxyapatite. (C) 2011 Elsevier Ltd. All rights reserved.