970 resultados para data collections
Resumo:
Rolling-element bearing failures are the most frequent problems in rotating machinery, which can be catastrophic and cause major downtime. Hence, providing advance failure warning and precise fault detection in such components are pivotal and cost-effective. The vast majority of past research has focused on signal processing and spectral analysis for fault diagnostics in rotating components. In this study, a data mining approach using a machine learning technique called anomaly detection (AD) is presented. This method employs classification techniques to discriminate between defect examples. Two features, kurtosis and Non-Gaussianity Score (NGS), are extracted to develop anomaly detection algorithms. The performance of the developed algorithms was examined through real data from a test to failure bearing. Finally, the application of anomaly detection is compared with one of the popular methods called Support Vector Machine (SVM) to investigate the sensitivity and accuracy of this approach and its ability to detect the anomalies in early stages.
Resumo:
Network topology and routing are two important factors in determining the communication costs of big data applications at large scale. As for a given Cluster, Cloud, or Grid system, the network topology is fixed and static or dynamic routing protocols are preinstalled to direct the network traffic. Users cannot change them once the system is deployed. Hence, it is hard for application developers to identify the optimal network topology and routing algorithm for their applications with distinct communication patterns. In this study, we design a CCG virtual system (CCGVS), which first uses container-based virtualization to allow users to create a farm of lightweight virtual machines on a single host. Then, it uses software-defined networking (SDN) technique to control the network traffic among these virtual machines. Users can change the network topology and control the network traffic programmingly, thereby enabling application developers to evaluate their applications on the same system with different network topologies and routing algorithms. The preliminary experimental results through both synthetic big data programs and NPB benchmarks have shown that CCGVS can represent application performance variations caused by network topology and routing algorithm.
Resumo:
Background Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease. However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables, to missing data for many variables. For spatial analyses of health outcomes, selection of an appropriate imputation method is critical in order to produce the most accurate inferences. Methods We present a cross-validation approach to select between three imputation methods for health survey data with correlated lifestyle covariates, using as a case study, type II diabetes mellitus (DM II) risk across 71 Queensland Local Government Areas (LGAs). We compare the accuracy of mean imputation to imputation using multivariate normal and conditional autoregressive prior distributions. Results Choice of imputation method depends upon the application and is not necessarily the most complex method. Mean imputation was selected as the most accurate method in this application. Conclusions Selecting an appropriate imputation method for health survey data, after accounting for spatial correlation and correlation between covariates, allows more complete analysis of geographic risk factors for disease with more confidence in the results to inform public policy decision-making.
Resumo:
BACKGROUND Many koala populations around Australia are in serious decline, with a substantial component of this decline in some Southeast Queensland populations attributed to the impact of Chlamydia. A Chlamydia vaccine for koalas is in development and has shown promise in early trials. This study contributes to implementation preparedness by simulating vaccination strategies designed to reverse population decline and by identifying which age and sex category it would be most effective to target. METHODS We used field data to inform the development and parameterisation of an individual-based stochastic simulation model of a koala population endemic with Chlamydia. The model took into account transmission, morbidity and mortality caused by Chlamydia infections. We calibrated the model to characteristics of typical Southeast Queensland koala populations. As there is uncertainty about the effectiveness of the vaccine in real-world settings, a variety of potential vaccine efficacies, half-lives and dosing schedules were simulated. RESULTS Assuming other threats remain constant, it is expected that current population declines could be reversed in around 5-6 years if female koalas aged 1-2 years are targeted, average vaccine protective efficacy is 75%, and vaccine coverage is around 10% per year. At lower vaccine efficacies the immunological effects of boosting become important: at 45% vaccine efficacy population decline is predicted to reverse in 6 years under optimistic boosting assumptions but in 9 years under pessimistic boosting assumptions. Terminating a successful vaccination programme at 5 years would lead to a rise in Chlamydia prevalence towards pre-vaccination levels. CONCLUSION For a range of vaccine efficacy levels it is projected that population decline due to endemic Chlamydia can be reversed under realistic dosing schedules, potentially in just 5 years. However, a vaccination programme might need to continue indefinitely in order to maintain Chlamydia prevalence at a sufficiently low level for population growth to continue.
Resumo:
In this paper, we show implementation results of various algorithms that sort data encrypted with Fully Homomorphic Encryption scheme based on Integers. We analyze the complexities of sorting algorithms over encrypted data by considering Bubble Sort, Insertion Sort, Bitonic Sort and Odd-Even Merge sort. Our complexity analysis together with implementation results show that Odd-Even Merge Sort has better performance than the other sorting techniques. We observe that complexity of sorting in homomorphic domain will always have worst case complexity independent of the nature of input. In addition, we show that combining different sorting algorithms to sort encrypted data does not give any performance gain when compared to the application of sorting algorithms individually.
Resumo:
The recent trend for journals to require open access to primary data included in publications has been embraced by many biologists, but has caused apprehension amongst researchers engaged in long-term ecological and evolutionary studies. A worldwide survey of 73 principal investigators (Pls) with long-term studies revealed positive attitudes towards sharing data with the agreement or involvement of the PI, and 93% of PIs have historically shared data. Only 8% were in favor of uncontrolled, open access to primary data while 63% expressed serious concern. We present here their viewpoint on an issue that can have non-trivial scientific consequences. We discuss potential costs of public data archiving and provide possible solutions to meet the needs of journals and researchers.
Resumo:
Developing innovative library services requires a real world understanding of faculty members' desired curricular goals. This study aimed to develop a comprehensive and deeper understanding of Purdue's nutrition science and political science faculties' expectations for student learning related to information and data information literacies. Course syllabi were examined using grounded theory techniques that allowed us to identify how faculty were addressing information and data information literacies in their courses, but it also enabled us to understand the interconnectedness of these literacies to other departmental intentions for student learning, such as developing a professional identity or learning to conduct original research. The holistic understanding developed through this research provides the necessary information for designing and suggesting information literacy and data information literacy services to departmental faculty in ways supportive of curricular learning outcomes.
Resumo:
Rapid advances in sequencing technologies (Next Generation Sequencing or NGS) have led to a vast increase in the quantity of bioinformatics data available, with this increasing scale presenting enormous challenges to researchers seeking to identify complex interactions. This paper is concerned with the domain of transcriptional regulation, and the use of visualisation to identify relationships between specific regulatory proteins (the transcription factors or TFs) and their associated target genes (TGs). We present preliminary work from an ongoing study which aims to determine the effectiveness of different visual representations and large scale displays in supporting discovery. Following an iterative process of implementation and evaluation, representations were tested by potential users in the bioinformatics domain to determine their efficacy, and to understand better the range of ad hoc practices among bioinformatics literate users. Results from two rounds of small scale user studies are considered with initial findings suggesting that bioinformaticians require richly detailed views of TF data, features to compare TF layouts between organisms quickly, and ways to keep track of interesting data points.
Resumo:
This thesis has investigated how to cluster a large number of faces within a multi-media corpus in the presence of large session variation. Quality metrics are used to select the best faces to represent a sequence of faces; and session variation modelling improves clustering performance in the presence of wide variations across videos. Findings from this thesis contribute to improving the performance of both face verification systems and the fully automated clustering of faces from a large video corpus.
Resumo:
Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.
Resumo:
This technical report describes a Light Detection and Ranging (LiDAR) augmented optimal path planning at low level flight methodology for remote sensing and sampling Unmanned Aerial Vehicles (UAV). The UAV is used to perform remote air sampling and data acquisition from a network of sensors on the ground. The data that contains information on the terrain is in the form of a 3D point clouds maps is processed by the algorithms to find an optimal path. The results show that the method and algorithm are able to use the LiDAR data to avoid obstacles when planning a path from a start to a target point. The report compares the performance of the method as the resolution of the LIDAR map is increased and when a Digital Elevation Model (DEM) is included. From a practical point of view, the optimal path plan is loaded and works seemingly with the UAV ground station and also shows the UAV ground station software augmented with more accurate LIDAR data.
Resumo:
On the basis of local data, we write in support of the conclusions of Smith and Ahern that current Pharmaceu- tical Benefits Scheme (PBS) criteria for tumour necrosis factor (TNF)-a inhibitors in ankylosing spondylitis (AS) are not evidence-based. 1 As a prerequisite to the appropriate use of biological therapy in AS, three aspects of the disease need to be defined: (i) diagnosis, (ii) activity and (iii) therapeutic failure (Table 1)....
Resumo:
This poster presents key features of how QUT’s integrated research data storage and management services work with researchers through their own individual or team research life cycle. By understanding the characteristics of research data, and the long-term need to store this data, QUT has provided resources and tools that support QUT’s goal of being a research intensive institute. Key to successful delivery and operation has been the focus upon researchers’ individual needs and the collaboration between providers, in particular, Information Technology Services, High Performance Computing and Research Support, and QUT Library. QUT’s Research Data Storage service provides all QUT researchers (staff and Higher Degree Research students (HDRs)) with a secure data repository throughout the research data lifecycle. Three distinct storage areas provide for raw research data to be acquired, project data to be worked on, and published data to be archived. Since the service was launched in late 2014, it has provided research project teams from all QUT faculties with acquisition, working or archival data space. Feedback indicates that the storage suits the unique needs of researchers and their data. As part of the workflow to establish storage space for researchers, Research Support Specialists and Research Data Librarians consult with researchers and HDRs to identify data storage requirements for projects and individual researchers, and to select and implement the most suitable data storage services and facilities. While research can be a journey into the unknown[1], a plan can help navigate through the uncertainty. Intertwined in the storage provision is QUT’s Research Data Management Planning tool. Launched in March 2015, it has already attracted 273 QUT staff and 352 HDR student registrations, and over 620 plans have been created (2/10/2015). Developed in collaboration with Office of Research Ethics and Integrity (OREI), uptake of the plan has exceeded expectations.
Resumo:
Bird species richness survey is one of the most intriguing ecological topics for evaluating environmental health. Here, bird species richness denotes the number of unique bird species in a particular area. Factors affecting the investigation of bird species richness include weather, observation bias, and most importantly, the prohibitive costs of conducting surveys at large spatiotemporal scales. Thanks to advances in recording techniques, these problems have been alleviated by deploying sensors for acoustic data collection. Although automated detection techniques have been introduced to identify various bird species, the innate complexity of bird vocalizations, the background noise present in the recording and the escalating volumes of acoustic data pose a challenging task on determination of bird species richness. In this paper we proposed a two-step computer-assisted sampling approach for determining bird species richness in one-day acoustic data. First, a classification model is built based on acoustic indices for filtering out minutes that contain few bird species. Then the classified bird minutes are ordered by an acoustic index and the redundant temporal minutes are removed from the ranked minute sequence. The experimental results show that our method is more efficient in directing experts for determination of bird species compared with the previous methods.