985 resultados para cytotoxin-associated gene A
Resumo:
Diabetes Mellitus is a metabolic disorder associated with insulin deficiency, which not.only affects the carbohydrate metabolism but also is associated with various central and peripheral complications. Chronic hyperglycemia during diabetes mellitus is a major initiator of diabetic microvascular complications like retinopathy, neuropathy, The central nervous system (CNS) neurotransmitters play an important role in the regulation of glucose homeostasis. These neurotransmitters mediate rapid intracellular communications not only within the central nervous system but also in the peripheral tissues. They exert their function through receptors present in both neuronal and non neuronal cell surface that trigger second messenger signaling pathways. Dopamine is a neurotransmitter that has been implicated in various central neuronal degenerative disorders like Parkinson's disease and behavioral diseases like Schizophrenia. Dopamine is synthesised from tyrosine, stored in vesicles in axon terminals and released when the neuron is depolarised. Dopamine interacts with specific membrane receptors to produce its effect. Dopamine plays an important role both centrally and peripherally. The recent identification of five dopamine receptor subtypes provides a basis for understanding dopamine's central and peripheral actions . Dopamine receptors are classified into two major groups : DA D1 like and DA D2 like. Dopamine D1 like receptors consists of DA D1 and DA D5 receptors . Dopamine D2 like receptors consists of DA D2, DA D3 and DA D4 receptors. Stimulation of the DA D1 receptor gives rise to increased production of cAMP. Dopamine D2 receptors inhibit cAMP production, but activate the inositol phosphate second messenger system . Impairment of central dopamine neurotransmission causes muscle rigidity, hormonal regulation , thought disorder and cocaine addiction. Peripheral dopamine receptors mediate changes in blood flow, glomerular filtration rate, sodium excretion and catecholamine release. The dopamine D2 receptors increased in the corpus striatum and cerebral cortex but decreased in the hypothalamus and brain stem indicating their involvement in regulating insulin secretion. Dopamine D2 receptor which has a stimulatory effecton insulin secretion decreased in the pancreatic islets during diabetes. Our in vitro studies confirmed the stimulatory role of dopamine D2 receptors in stimulation of glucose induced insulin secretion. A detailed study at the molecular level on the mechanisms involved in the role of dopamine in insulin secretion, its functional modification could lead to therapeutic interventions that will have immense clinical importance.
Resumo:
The present thesis is an attempt to understand the role of GABA, GABAA and GABAB receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain GABAergic changes associated with normal and neoplastic cell growth in liver and to delineate its regulatory function. The investigation of mechanisms involving mitogenic models without cell necrosis may contribute our knowledge about both on cell growth, carcinogenesis, liver pathology and treatment. Objectives of the present study are, to induce controlled liver cell proliferation by partial hepatectomy and lead nitrate administration and uncontrolled cell proliferation by N-nitrosodiethylamine treatment in male Wistar rats, the changes in the content of GABA, GABAA,GABAB in various rat brain regions. To study the GABAA and GABAB receptor changes in brain stem, hypothalamus, cerebellum and cerebral cortex during the active cortex during the period of active DNA synthesis in liver of different experimental groups. The changes in GABAA and GABAB receptor function of the brain stem, hypothalamus and cerebellum play an important role sympathetic regulation of cell proliferation and neoplastic growth in liver. The decrease in GABA content in brain stem, hypothalamus and cerebellum during regeneration and neoplasia in liver. The time course of brain GABAergic changes was closely correlated with that of heptic DNA synthesis. The functional significance of these changes was further explored by studying the changes in GABAA and GABAB receptors in brain.
Resumo:
Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.
Resumo:
In the present study we address the issue on gut associated lactic acid bacteria (LAB) isolated from the intestine of estuarine fish Mugil cephalus using de Man Rogossa and Sharpe (MRS) agar. LAB isolates were identified biochemically and screened for their ability to inhibit in vitro growth of various fish, shrimp and human pathogens. Most of the LAB isolates displayed an improved antagonism against fish pathogens compared to shrimp and human pathogens. Selected representative strains displaying high antibacterial activity were identified using 16S rRNA gene sequence analysis. Of the selected strains Lactobacillus brevis was the most predominant. Four other species of Lactobacillus, Enterobacter hormaechei and Enterobacter ludwigii were also identified. It was also observed that even among same species, considerable diversity with respect to substrate utilization persisted. Considering the euryhaline nature of grey mullet (Mugil cephalus), the LAB isolated from the gut possessed good tolerance to varying salt concentrations. This finding merits further investigation to evaluate whether the isolated LAB could be used as probiotics in various fresh and sea water aquaculture
Resumo:
Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1 ), tryptose phosphate broth (2.95 g l 1), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 lgml 1 chloramphenicol, 100 lgml 1 streptomycin and 100 IU ml 1 penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-20-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24 h. Susceptibility of the cells to WSSV was confirmed by immunofluoresence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT50/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC50. The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals
Resumo:
Shrimp cell lines are yet to be reported and this restricts the prospects of investigating the associated viral pathogens, especially white spot syndrome virus (WSSV). In this context, development of primary cell cultures from lymphoid organs was standardized. Poly-l-lysine-coated culture vessels enhanced growth of lymphoid cells, while the application of vertebrate growth factors did not, except insulin-like growth factor-1 (IGF-1). Susceptibility of the lymphoid cells to WSSV was confirmed by immunofluoresence assay using monoclonal antibody against the 28 kDa envelope protein of WSSV. Expression of viral and immunerelated genes in WSSV-infected lymphoid cultures could be demonstrated by RT-PCR. This emphasizes the utility of lymphoid primary cell culture as a platform for research in virus–cell interaction, virus morphogenesis, up and downregulation of shrimp immune-related genes, and also for the discovery of novel drugs to combat WSSV in shrimp culture
Resumo:
Aeromonas spp. are ubiquitous aquatic organisms, associated with multitude of diseases in several species of animals, including fishes and humans. In the present study, water samples from two ornamental fish culture systems were analyzed for the presence of Aeromonas. Nutrient agar was used for Aeromonas isolation, and colonies (60 No) were identified through biochemical characterization. Seven clusters could be generated based on phenotypic characters, analyzed by the programme NTSYSpc, Version 2.02i, and identified as: Aeromonas caviae (33.3%), A. jandaei (38.3%) and A. veronii biovar sobria (28.3%). The strains isolated produced highly active hydrolytic enzymes, haemolytic activity and slime formation in varying proportions. The isolates were also tested for the enterotoxin genes (act, alt and ast), haemolytic toxins (hlyA and aerA), involved in type 3 secretion system (TTSS: ascV, aexT, aopP, aopO, ascF–ascG, and aopH), and glycerophospholipid-cholesterol acyltransferase (gcat). All isolates were found to be associated with at least one virulent gene. Moreover, they were resistant to frequently used antibiotics for human infections. The study demonstrates the pathogenic potential of Aeromonas, associated with ornamental fish culture systems suggesting the emerging threat to public health
Resumo:
The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.
Resumo:
Post-transcriptional gene silencing by RNA interference is mediated by small interfering RNA called siRNA. This gene silencing mechanism can be exploited therapeutically to a wide variety of disease-associated targets, especially in AIDS, neurodegenerative diseases, cholesterol and cancer on mice with the hope of extending these approaches to treat humans. Over the recent past, a significant amount of work has been undertaken to understand the gene silencing mediated by exogenous siRNA. The design of efficient exogenous siRNA sequences is challenging because of many issues related to siRNA. While designing efficient siRNA, target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. So before doing gene silencing by siRNAs, it is essential to analyze their off-target effects in addition to their inhibition efficiency against a particular target. Hence designing exogenous siRNA with good knock-down efficiency and target specificity is an area of concern to be addressed. Some methods have been developed already by considering both inhibition efficiency and off-target possibility of siRNA against agene. Out of these methods, only a few have achieved good inhibition efficiency, specificity and sensitivity. The main focus of this thesis is to develop computational methods to optimize the efficiency of siRNA in terms of “inhibition capacity and off-target possibility” against target mRNAs with improved efficacy, which may be useful in the area of gene silencing and drug design for tumor development. This study aims to investigate the currently available siRNA prediction approaches and to devise a better computational approach to tackle the problem of siRNA efficacy by inhibition capacity and off-target possibility. The strength and limitations of the available approaches are investigated and taken into consideration for making improved solution. Thus the approaches proposed in this study extend some of the good scoring previous state of the art techniques by incorporating machine learning and statistical approaches and thermodynamic features like whole stacking energy to improve the prediction accuracy, inhibition efficiency, sensitivity and specificity. Here, we propose one Support Vector Machine (SVM) model, and two Artificial Neural Network (ANN) models for siRNA efficiency prediction. In SVM model, the classification property is used to classify whether the siRNA is efficient or inefficient in silencing a target gene. The first ANNmodel, named siRNA Designer, is used for optimizing the inhibition efficiency of siRNA against target genes. The second ANN model, named Optimized siRNA Designer, OpsiD, produces efficient siRNAs with high inhibition efficiency to degrade target genes with improved sensitivity-specificity, and identifies the off-target knockdown possibility of siRNA against non-target genes. The models are trained and tested against a large data set of siRNA sequences. The validations are conducted using Pearson Correlation Coefficient, Mathews Correlation Coefficient, Receiver Operating Characteristic analysis, Accuracy of prediction, Sensitivity and Specificity. It is found that the approach, OpsiD, is capable of predicting the inhibition capacity of siRNA against a target mRNA with improved results over the state of the art techniques. Also we are able to understand the influence of whole stacking energy on efficiency of siRNA. The model is further improved by including the ability to identify the “off-target possibility” of predicted siRNA on non-target genes. Thus the proposed model, OpsiD, can predict optimized siRNA by considering both “inhibition efficiency on target genes and off-target possibility on non-target genes”, with improved inhibition efficiency, specificity and sensitivity. Since we have taken efforts to optimize the siRNA efficacy in terms of “inhibition efficiency and offtarget possibility”, we hope that the risk of “off-target effect” while doing gene silencing in various bioinformatics fields can be overcome to a great extent. These findings may provide new insights into cancer diagnosis, prognosis and therapy by gene silencing. The approach may be found useful for designing exogenous siRNA for therapeutic applications and gene silencing techniques in different areas of bioinformatics.
Resumo:
Der eukaryotische Mikroorganismus Dictyostelium discoideum lebt als einzellige Amöbe solange ausreichende Nahrungsressourcen zur Verfügung stehen. Sobald Nahrungsmangel eintritt, entwickeln sich die Zellen von einem einzelligen zu einem mehrzelligen Zustand, der mit einem multizellulären Fruchtkörper abschließt. Dieser Prozess wird durch eine Reihe aufeinanderfolgender Signale organisiert, die eine differentielle Genexpression regulieren. Die Gene der Discoidin I Familie gehören zu den Ersten, die im Laufe des Wachstums-Differenzierungs-Übergangs (engl. GDT) aktiviert werden. Sie eignen sich daher vorzüglich als Marker für den Beginn der Entwicklung. Mit Hilfe einer REMI-Mutagenese und Discoidin I als molekularem Marker sind verschiedene Komponenten des Wachstums-Differenzierungs-Übergangs in unserer Arbeitsgruppe identifiziert worden (Zeng et al., 2000 A und B; Riemann und Nellen, persönliche Mitteilung). Mit demselben Ansatz wurde in der vorliegenden Arbeit eine REMI-Mutante identifiziert, die eine Fehl-Expression von Discoidin zeigte und einen axenischen Wachstumsdefekt bei 15 °C aufwies. Das Gen wurde als Homolog zum humanen Tafazzin-Gen identifiziert. Dieses Gen wurde zur Rekonstruktion des Phänotyps über homologe Rekombination erneut disruptiert, was wie erwartet zu dem zuerst beschriebenen Phänotyp führte. Folgerichtig ergab eine Überexpression des Gens in den Mutanten eine Komplementation des Phänotyps. Immunfluoreszenz-Experimente zeigten eine mitochondriale Lokalisation des Dictyostelium discoideum Taffazzin Proteins. Dass ein mitochondriales Protein in Zusammenhang mit dem Wachstums-Differenzierungs-Übergang steht, ist ein unerwarteter Befund, der aber als Hinweis darauf gewertet werden kann, dass Mitochondrien einen direkten Einfluss auf die entwicklungsspezifische Signaltransduktion ausüben. Die Taffazzin Disruptions-Mutante in Dictyostelium führte zu einem abnormalen Cardiolipin Metabolismus. Dieses Phospholipid ist ein charakteristischer Bestandteil der inneren Mitochondrienmembran und für die Funktion verschiedener Enzyme erforderlich. Unsere vorläufigen Analysen des Phospholipid-Gehalts zeigten Übereinstimmung mit Daten von Patienten mit Barth-Syndrom, einer humanen Erkrankung, bei der das Taffazzin-Gen Mutationen aufweist, und mit Hefe-Mutanten dieses Gens. Dies zeigt den Wert von Dictyostelium discoideum als einen weiteren Modelorganismus zur Untersuchung des Barth-Syndroms und zur Erprobung möglicher Therapieansätze.
Resumo:
A series of vectors for the over-expression of tagged proteins in Dictyostelium were designed, constructed and tested. These vectors allow the addition of an N- or C-terminal tag (GFP, RFP, 3xFLAG, 3xHA, 6xMYC and TAP) with an optimized polylinker sequence and no additional amino acid residues at the N or C terminus. Different selectable markers (Blasticidin and gentamicin) are available as well as an extra chromosomal version; these allow copy number and thus expression level to be controlled, as well as allowing for more options with regard to complementation, co- and super-transformation. Finally, the vectors share standardized cloning sites, allowing a gene of interest to be easily transfered between the different versions of the vectors as experimental requirements evolve. The organisation and dynamics of the Dictyostelium nucleus during the cell cycle was investigated. The centromeric histone H3 (CenH3) variant serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. A number of Dictyostelium histone H3-domain containing proteins as GFP-tagged fusions were expressed and it was found that one of them functions as CenH3 in this species. Like CenH3 from some other species, Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins. The targeting domain, comprising α-helix 2 and loop 1 of the histone fold is required for targeting CenH3 to centromeres. Compared to the targeting domain of other known and putative CenH3 species, Dictyostelium CenH3 has a shorter loop 1 region. The localisation of a variety of histone modifications and histone modifying enzymes was examined. Using fluorescence in situ hybridisation (FISH) and CenH3 chromatin-immunoprecipitation (ChIP) it was shown that the six telocentric centromeres contain all of the DIRS-1 and most of the DDT-A and skipper transposons. During interphase the centromeres remain attached to the centrosome resulting in a single CenH3 cluster which also contains the putative histone H3K9 methyltransferase SuvA, H3K9me3 and HP1 (heterochromatin protein 1). Except for the centromere cluster and a number of small foci at the nuclear periphery opposite the centromeres, the rest of the nucleus is largely devoid of transposons and heterochromatin associated histone modifications. At least some of the small foci correspond to the distal telomeres, suggesting that the chromosomes are organised in a Rabl-like manner. It was found that in contrast to metazoans, loading of CenH3 onto Dictyostelium centromeres occurs in late G2 phase. Transformation of Dictyostelium with vectors carrying the G418 resistance cassette typically results in the vector integrating into the genome in one or a few tandem arrays of approximately a hundred copies. In contrast, plasmids containing a Blasticidin resistance cassette integrate as single or a few copies. The behaviour of transgenes in the nucleus was examined by FISH, and it was found that low copy transgenes show apparently random distribution within the nucleus, while transgenes with more than approximately 10 copies cluster at or immediately adjacent to the centromeres in interphase cells regardless of the actual integration site along the chromosome. During mitosis the transgenes show centromere-like behaviour, and ChIP experiments show that transgenes contain the heterochromatin marker H3K9me2 and the centromeric histone variant H3v1. This clustering, and centromere-like behaviour was not observed on extrachromosomal transgenes, nor on a line where the transgene had integrated into the extrachromosomal rDNA palindrome. This suggests that it is the repetitive nature of the transgenes that causes the centromere-like behaviour. A Dictyostelium homolog of DET1, a protein largely restricted to multicellular eukaryotes where it has a role in developmental regulation was identified. As in other species Dictyostelium DET1 is nuclear localised. In ChIP experiments DET1 was found to bind the promoters of a number of developmentally regulated loci. In contrast to other species where it is an essential protein, loss of DET1 is not lethal in Dictyostelium, although viability is greatly reduced. Loss of DET1 results in delayed and abnormal development with enlarged aggregation territories. Mutant slugs displayed apparent cell type patterning with a bias towards pre-stalk cell types.
Resumo:
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Resumo:
We previously reported that the G allele of rs3853839 at 3′untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10−10, odds ratio (OR) (95%CI) = 1.27 (1.17–1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10−11, OR = 1.24 [1.18–1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3′UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R2 = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3′UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta = 2.0×10−19, OR = 1.25 [1.20–1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor miR-3148.
Resumo:
Genetic studies of autism spectrum conditions (ASC) have mostly focused on the "low functioning" severe clinical subgroup, treating it as a rare disorder. However, ASC is now thought to be relatively common ( approximately 1%), and representing one end of a quasi-normal distribution of autistic traits in the general population. Here we report a study of common genetic variation in candidate genes associated with autistic traits and Asperger syndrome (AS). We tested single nucleotide polymorphisms in 68 candidate genes in three functional groups (sex steroid synthesis/transport, neural connectivity, and social-emotional responsivity) in two experiments. These were (a) an association study of relevant behavioral traits (the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ)) in a population sample (n=349); and (b) a case-control association study on a sample of people with AS, a "high-functioning" subgroup of ASC (n=174). 27 genes showed a nominally significant association with autistic traits and/or ASC diagnosis. Of these, 19 genes showed nominally significant association with AQ/EQ. In the sex steroid group, this included ESR2 and CYP11B1. In the neural connectivity group, this included HOXA1, NTRK1, and NLGN4X. In the socio-responsivity behavior group, this included MAOB, AVPR1B, and WFS1. Fourteen genes showed nominally significant association with AS. In the sex steroid group, this included CYP17A1 and CYP19A1. In the socio-emotional behavior group, this included OXT. Six genes were nominally associated in both experiments, providing a partial replication. Eleven genes survived family wise error rate (FWER) correction using permutations across both experiments, which is greater than would be expected by chance. CYP11B1 and NTRK1 emerged as significantly associated genes in both experiments, after FWER correction (P<0.05). This is the first candidate-gene association study of AS and of autistic traits. The most promising candidate genes require independent replication and fine mapping.
Resumo:
Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidopsis of calcium influx and oxidative burst induced by non-saturating concentrations of bacterial MAMPs, used singly and in combination: flagellin peptide (flg22), elongation factor peptide (elf18), peptidoglycan (PGN) and component muropeptides, lipo-oligosaccharide (LOS) and core oligosaccharides. This revealed that some MAMPs have additive (e.g. flg22 with elf18) and even synergistic (flg22 and LOS) effects, whereas others mutually interfere (flg22 with OGA). OGA suppression of flg22-induced defences was not a result of the interference with the binding of flg22 to its receptor flagellin-sensitive 2 (FLS2). MAMPs induce different calcium influx signatures, but these are concentration dependent and unlikely to explain the differential induction of defence genes [pathogenesis-related gene 1 (PR1), plant defensin gene 1.2 (PDF1.2) and phenylalanine ammonia lyase gene 1 (PAL1)] by flg22, elf18 and OGA. The peptide MAMPs are potent elicitors at subnanomolar levels, whereas PGN and LOS at high concentrations induce low and late host responses. This difference might be a result of the restricted access by plant cell walls of MAMPs to their putative cellular receptors. flg22 is restricted by ionic effects, yet rapidly permeates a cell wall matrix, whereas LOS, which forms supramolecular aggregates, is severely constrained, presumably by molecular sieving. Thus, MAMPs can interact with each other, whether directly or indirectly, and with the host wall matrix. These phenomena, which have not been considered in detail previously, are likely to influence the speed, magnitude, versatility and composition of plant defences.