974 resultados para cuprate oxides
Resumo:
Hollandite oxides of the type Bi1.7-xPbxV8O16 have been synthesized. The electrical resistivity studies show that the conductivity improves upon Pb substitution. The feasibility of Li intercalation in the system has been established. Magnetic susceptibility studies on the pure and Li intercalated phases show that except for pure Bi1.7V8O16, all phases exhibit Pauli paramagnetism. No superconductivity is encountered down to 12 K in any of the phases. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Deintercalation of amines from the layered amine adducts of WO3, MoO3 and W1-xMoxO3 has been employed as a soft chemical route to produce unusual metastable structures of the oxides. After the adducts of WO3, MoO3 and W1-xMoxO3 (x = 0.25, 0.5, 0.75) with amines such as triethylamine (TEA), pyridine, n-butylamine and n-octylamine had been characterized, deintercalation was carried out thermally as well as by acid leaching. Thermal deintercalation yielded novel metastable structures of WO3 and MoO3 that were significantly different from the stable forms, which contain distorted metal-oxygen octahedra. Thus, ReO3-type cubic WO3 was obtained by the thermal deintercalation of WO3 . 0.5 TEA. Acid leaching of the amines gave metastable phases of WO3, MoO3 and W1-xMoxO3, which were different from those obtained thermally. All the metastable phases transformed to the corresponding stable forms at higher temperatures.
Resumo:
The Gibbs free energies of formation of strontium and barium zirconates have been determined in the temperature range 960 to 1210 K using electrochemical cells incorporating the respective alkaline-earth fluoride single crystals as solid electrolytes. Pure strontium and barium monoxides were used in the reference electrodes. During measurements on barium zirconate, the oxygen partial pressure in the gas phase over the electrodes was maintained at a low value of 18.7 Pa to minimize the solubility of barium peroxide in the monoxide phase. Strontium zirconate was found to undergo a phase transition from orthorhombic perovskite to) with space group Cmcm; D-2h(17) to tetragonal perovskite (t) having the space group 14/mcm; D-4h(18) at 1123 (+/- 10) K. Barium zirconate does not appear to undergo a phase transition in the temperature range of measurement. It has the cubic perovskite (c) structure. The standard free energies of formation of the zirconates from their component binary oxides AO (A = Sr, Ba) with rock salt (rs) and ZrO2 with monoclinic (m) structures can be expressed by the following relations:SrO (rs) + ZrO2 (m) --> SrZrO3 (o) Delta G degrees = -74,880 - 14.2T (+/-200) J mol(-1) SrO (rs) + ZrO2 (m) --> SrZrO3 (t) Delta G degrees = -73,645 - 15.3T (+/-200) J mol(-1) BaO (rs) + ZrO2 (m) --> BaZrO4 (c) Delta G degrees = -127,760 - 1.79T (+/-250) J mol(-1) The results of this study are in reasonable agreement with calorimetric measurements reported in the literature. Systematic trends in the stability of alkaline-earth zirconates having the stoichiometry AZrO(3) are discussed.
Resumo:
All ‘undoped’ cuprates are antiferromagnetic Mott insulators. We argue that with doping they remain to be insulators including the ‘overdoped’ samples. Hence, there is no clear dividing line between non–metallic cuprates and high–temperature superconductors. Based on the generic Hamiltonian including the electron–phonon interaction and the direct Coulomb repulsion the ground state of doped cuprates is shown to be a charged 2e Bose liquid of small bipolarons. A theory of the normal state transport of copper oxides is developed. The temperature dependence of the resistivity and of the Hall effect agrees remarkably well with the experimental data in La2–xSrxCuO4 for the entire temperature regime including unusual ‘logarithmic’ low–temperature region. The violation of Kohler's rule in magnetoresistivity is explained. The resistive and thermodynamic superconducting transitions in a magnetic field are quantitatively described.
Resumo:
Simultaneous reduction of iron and chromium oxides from synthetic electric are furnace stainless steelmaking slag in a graphite crucible has been studied. Above the melting point of iron the reduction of iron oxide leads to a carbon saturated Fe-C melt, but below the melting point of iron initially solid iron or iron carbide forms on the crucible surface. Only when a certain number of Fe-C droplets are formed does the reduction of chromium oxide start to form an Fe-Cr-C alloy. The reaction proceeds with pronounced foaming which depends on the basicity, temperature, and iron oxide content of the slag. IS/1352a (C) 1998 The Institute of Materials.
Resumo:
The standard Gibbs energies of formation of lanthanum orthoferrite (LaFeO3-delta) and hexaferrite (LaFe12O19)were determined using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen gas at ambient pressure as the reference electrode. From emf of the solid-state cell, the Gibbs energy of formation of nonstoichiometric orthoferrite (LaFeO3-delta) is obtained. To derive values for the stoichiometric phase, variation of the oxygen nonstoichiometric parameter with oxygen partial pressure was measured using thermogravimetry under controlled gas mixtures. The results obtained for LaFeO3 and LaFe12O19 can be summarized by the following equations, which represent the formation of ternary oxides from their component binary oxides: 1/2 La2O3 + 1/2 Fe2O3 -> LaFeO3: Delta G degrees (LaFeO3) (+/- 450) (J mol(-1)) = -62920 - 2.12T (K), and 1/2 La2O3 + 9/2Fe(2)O(3) + Fe3O4 -> LaFe12O19; Delta G degrees (LaFe12O19) (+/- 200) (J mol(-1)) = -103900 + 21.25T (K). These data are discussed critically in comparison with thermodynamic values reported in the literature from a variety of measurements. The values obtained in this study are consistent with calorimetric entropy and enthalpy of formation of the perovskite phase and with some of the Gibbs energy measurements reported in the literature. For the lanthanum hexaferrite (LaFe12O19) there are no prior thermodynamic measurements for comparison. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Controlled pyrolysis of Al(OBus)(3), Zr(OPrn)(4) and their mixtures in ethyl acetate induced using microwaves of 2.45 GHz frequency has been carried out. Microwave irradiation yields second-stage precursors for the preparation of respective oxides and their composites. It is observed that the microwave irradiation has a directive influence on the morphology of the ultimate oxide products. Al2O3, ZrO2 and the two composites 90% Al2O3-10% ZrO2 and 90% ZrO2-10% Al2O3 are also found to be sintered to very high densities within 35 min of microwave irradiation by the use of beta-SiC as a secondary susceptor.
Resumo:
Oxides of the general formula La2-2xSr2xCu1-xII,M(x)(IV)O(4) (M = Ti, Mn, Fe, or Ru), crystallizing in the tetragonal K,NIF, structure, have been synthesized. For M=Ti, only the x=0,5 member could be prepared, while for M=Mn and Fe, the composition range is 0
Resumo:
A simple, novel, and fast method of preparation of metal nitride powders (GaN, TiN, and VN) using microwave-assisted carbothermal reduction and nitridation has been demonstrated. The procedure uses the respective oxides and amorphous carbon powder as the starting materials. Ammonia gas is found to be more effective in nitridation than high-purity N-2 gas. Complete nitridation is achieved by the use of a slight excess of amorphous carbon. Metals themselves are not found to be effectively nitrided. The products were characterized using XRD, TEM, and SAED and found to possess good crystallinity and phase purity. The method can be of general applicability for the preparation of metal nitrides.
Resumo:
We describe the design and synthesis of new lithium ion conductors with the formula, LiSr(1.65)rectangle(0.35)B(1.3)B'O-1.7(9) (rectangle = vacancy; B = Ti, Zr; B' = Nb, Ta), on the basis of a systematic consideration of the composition-structure-property correlations in the well-known lithium-ion conductor, La-(2/3-x)Li(3x)rectangle((1/3)-2x)TiO3 (I), as well as the perovskite oxides in Li-A-B,B'-O (A = Ca, Sr, Ba; B = Ti, Zr; B' = Nb, Ta) systems. A high lithium-ion conductivity of ca. 0.12 S/cm at 360 degrees C is exhibited by LiSr(1.65)rectangle(0.35)Ti(1.3)Ta(1.7)O(9) (III) and LiSr(1.65)rectangle(0.35)Zr(1.3)Ta(1.7)O(9) (IV), of which the latter containing stable Zr(IV) and Ta(V) oxidation states is likely to be a candidate electrolyte material for all-solid-state lithium battery application. More importantly, we believe the approach described here could be extended to synthesize newer, possibly better, lithium ion conductors.
Resumo:
We report a study of the magnetoresistance (MR) of the metallic perovskite oxide LaNiO3-delta as a function of the oxygen stoichiometry delta (delta less than or equal to 0.14), magnetic field (H less than or equal to 6 T) and temperature (1.5 K less than or equal to T less than or equal to 25 K). We find a strong dependence of the nature of the MR on the oxygen stoichiometry. The MR at low temperatures changes from positive to negative as the sample becomes more oxygen deficient (i.e. delta increases). Some of the samples, which are more resistive, show resistivity minima at T-min approximate to 20 K. We find that in these samples the MR is positive for T > T-min and negative for T < T-min. We conclude that in the absence of strong magnetic interaction, the negative MR in these oxides can arise from weak-localization effects.
Resumo:
Several vanadium, tungsten, and molybdenum oxide bronzes have been prepared using microwave irradiation. Metal oxides and alkali metal iodides were used as starting materials, Intermittent grinding and inert atmosphere were found to be necessary for the synthesis of most of the bronzes, The reaction temperatures are remarkably lower than those employed for conventional synthetic techniques and the microwave assisted reactions proceed at extremely fast rates. The microwave synthesized bronzes consist of particles having long, rectangular rod-like morphology. (C) 1999 Academic Press.
Resumo:
There have been major advances in solid state and materials chemistry in the last two decades and the subject is growing rapidly. In this account, a few of the important aspects of materials chemistry of interest to the author are presented. Accordingly, transition metal oxides, which constitute the most fascinating class of inorganic materials, receive greater attention, Metal-insulator transitions in oxides, high temperature superconductivity in cuprates and colossal magnetoresistance in manganates are discussed at some length and the outstanding problems indicated, We then discuss certain other important classes of materials which include molecular materials, biomolecular materials and porous solids. Recent developments in synthetic strategies for inorganic materials are reviewed. Some results on metal nanoparticles and nanotubes are briefly presented. The overview, which is essentially intended to provide a flavour of the subject and show how it works, lists references to many crucial reviews in the recent literature.
Resumo:
The synthesis and thermal analysis studies of several hydroxobridged homo and hetero trinuclear cobalt(III) complexes are reported. The complexes are of the type [M(H2O)(x) {(OH)(2)Co(en)(2)}(2)](SO4)(2). nH(2)O and [M(H2O)(x){(OH)(2)Co(NH3)(4)}(2)] (SO4)(2). nH(2)O where en denotes ethylenediamine and M =Co(II), Ni(II), Cu(II) and Zn(II) with x=0 for Cu(II), and 2 for other metal ions, and n =3, 4 or 5. The TG and DTA studies of these compounds show that one or more intermediate compounds are formed in each case before the metal oxides are produced.
Resumo:
Use of microwaves in the synthesis of materials is gaining importance. Microwave-assisted synthesis is generally much faster, cleaner, and more economical than the conventional methods. A variety of materials such as carbides, nitrides, complex oxides, silicides, zeolites, apatite, etc. have been synthesized using microwaves. Many of these are of industrial and technological importance. An understanding of the microwave interaction with materials has been based on concepts of dielectric heating and of the resonance absorption due to rotational excitation. This review presents a summary of recent reports of microwave synthesis of inorganic materials. Various observations regarding microwave interaction with materials are also briefly discussed.