989 resultados para copper oxide nanostructures
Resumo:
The main objective of this thesis work is to optimize the growth conditions for obtaining crystalline and conducting Lao.5Sro.5Co03 (LSCO) and Lao.5Sro.5Coo.5.5Nio.5O3 (LSCNO) thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The thin films were used as electrodes for the fabrication of ferroelectric capacitors using BaO.7SrO.3 Ti03 (BST) and PbZro.52 Tio.4803 (PZT). The structural and transport properties of the La1_xSrxCo03 and Lao.5Sro.5Co1_xNix03 are also investigated. The characterization of the bulk and the thin films were performed using different tools. A powder X-ray diffractometer was used to analyze the crystalline nature of the material. The transport properties were investigated by measuring the temperature dependence of resistivity using a four probe technique. The magnetoresistance and thermoelectric power were also used to investigate the transport properties. Atomic force microscope was used to study the surface morphology and thin film roughness. The ferroelectric properties of the capacitors were investigated using RT66A ferroelectric tester.
Resumo:
This work mainly concentrate to understand the optical and electrical properties of amorphous zinc tin oxide and amorphous zinc indium tin oxide thin films for TFT applications. Amorphous materials are promising in achieving better device performance on temperature sensitive substrates compared to polycrystalline materials. Most of these amorphous oxides are multicomponent and as such there exists the need for an optimized chemical composition. For this we have to make individual targets with required chemical composition to use it in conventional thin film deposition techniques like PLD and sputtering. Instead, if we use separate targets for each of the cationic element and if separately control the power during the simultaneous sputtering process, then we can change the chemical composition by simply adjusting the sputtering power. This is what is done in co-sputtering technique. Eventhough there had some reports about thin film deposition using this technique, there was no reports about the use of this technique in TFT fabrication until very recent time. Hence in this work, co-sputtering has performed as a major technique for thin film deposition and TFT fabrication. PLD were also performed as it is a relatively new technique and allows the use high oxygen pressure during deposition. This helps to control the carrier density in the channel and also favours the smooth film surface. Both these properties are crucial in TFT.Zinc tin oxide material is interesting in the sense that it does not contain costly indium. Eventhough some works were already reported in ZTO based TFTs, there was no systematic study about ZTO thin film's various optoelectronic properties from a TFT manufacturing perspective. Attempts have made to analyse the ZTO films prepared by PLD and co-sputtering. As more type of cations present in the film, chances are high to form an amorphous phase. Zinc indium tin oxide is studied as a multicomponent oxide material suitable for TFT fabrication.
Resumo:
Various synthesis routes have been developed in recent years for the preparation of nanoparticles. One of those methods is polymer induced crystallization. The first objective of the present work was to prepare nano ZnO powder by polymer induced crystallization in chitosan solution and to characterize the material using different techniques like TEM, SEM, XRD, FTLR, UV spectroscopy, TGA, DSC etc.The second object of the study is to prepare composites using nano ZnO. It has been undertaken to explore the potential of nano ZnO as reinforcement in engineering as well as commodity thermoplastics to widen their application spectra. We selected three engineering thermoplastics like [poly ethylene terephthalate, polyamide 6, and polycarbonate] and three commodity plastics like [polypropylene, high density polyethylene, and polystyrene] for the study. To date one of the few disadvantages associated with nanoparticle incorporation has concerned toughness and impact performance. Modification of polymers could reduce impact performance. The present study also focused on whether nano ZnO can act as a modifier for thennoplastics, without sacrificing their impact strength.
Resumo:
Electron-phonon interaction is considered within the framework of the fluctuating valence of Cu atoms. Anderson's lattice Hamiltonian is suitably modified to take this into account. Using Green's function technique tbe possible quasiparticle excitations' are determined. The quantity 2delta k(O)/ kB Tc is calculated for Tc= 40 K. The calculated values are in good agreement with the experimental results.
Resumo:
Photoluminescence, thermoluminescence and phosphorescence studies of cerium and copper doped BaS phosphors are attempted. Cu+ centres in BaS lattice activate red emission while Ce3+ sensitize the blue emission. Results are explained on the basis of superposition theory involving monomolecular kinetics. In Randall and Wilkins model, the decay and TL studies are found to corelate each other.
Resumo:
The dielectric properties of vacuum-deposited europium oxide films have been investigated in the frequency range from 1 kHz to 1 MHz at various temperatures (300-543 K). The dielectric constant is found to depend on film thickness and it attains a constant value beyond 1000 Å. Films deposited at higher substrate temperatures (above 423 K) exhibit improved dielectric properties owing to the recovery of stoichiometry. The frequency variation of the loss factor exhibits a minimum which increases with rise in temperature. The breakdown field strength (about 106V cm-1) is found to be thickness dependent and it varies in accordance with the Forlani-Minnaja relation. The films exhibit ohmic conduction with an activation energy of 0.86 eV at low electric fields but at higher fields the conductivity becomes space charge limited. X-ray studies show that the films are amorphous in nature. The a.c. conductivity is proportional to ω at low frequency, whereas a square law dependence is observed at higher frequencies. The optical constants n, α and k and optical band gap are calculated from the UV-visible-near-IR spectra.
Resumo:
Cochin University of Science and Technology
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
In the present work, we describe our efforts to develop device quality CuInSe2, films through low cost, simple and eco-friendly hybrid techniques. The most important point to be highlighted here is that the method fully avoids the use of poisonous gases such as H2Se/Se vapour. Instead, selenisation is achieved through solid state reaction between amorphous selenium and polycrystalline metal layers resulting in both binary and ternary selenides. Thin films of amorphous selenium (a-Se) used for this is deposited using Chemical Bath Deposition (CBD). CulnSe2 films are prepared through the selenisation process. Another PV material, indium selenide (In2Se3) thin films are also prepared using this process.
Resumo:
Present work deals with the Preparation and characterization of high-k aluminum oxide thin films by atomic layer deposition for gate dielectric applications.The ever-increasing demand for functionality and speed for semiconductor applications requires enhanced performance, which is achieved by the continuous miniaturization of CMOS dimensions. Because of this miniaturization, several parameters, such as the dielectric thickness, come within reach of their physical limit. As the required oxide thickness approaches the sub- l nm range, SiO 2 become unsuitable as a gate dielectric because its limited physical thickness results in excessive leakage current through the gate stack, affecting the long-term reliability of the device. This leakage issue is solved in the 45 mn technology node by the integration of high-k based gate dielectrics, as their higher k-value allows a physically thicker layer while targeting the same capacitance and Equivalent Oxide Thickness (EOT). Moreover, Intel announced that Atomic Layer Deposition (ALD) would be applied to grow these materials on the Si substrate. ALD is based on the sequential use of self-limiting surface reactions of a metallic and oxidizing precursor. This self-limiting feature allows control of material growth and properties at the atomic level, which makes ALD well-suited for the deposition of highly uniform and conformal layers in CMOS devices, even if these have challenging 3D topologies with high aspect-ratios. ALD has currently acquired the status of state-of-the-art and most preferred deposition technique, for producing nano layers of various materials of technological importance. This technique can be adapted to different situations where precision in thickness and perfection in structures are required, especially in the microelectronic scenario.
Resumo:
Asha M. R This thesis Entitled Toxicological effects of copper and mercury on the fish macerones gulio (hamiloton – buchanan).Chapter 1. In this chapter, a broad outline of heavy metal uptake, requirement of a suitable bio — monitoring organism, criteria for a standard test fish, and suitability of Macrones gulig for the toxicological study are given. Chapter 2. This chapter deals with the lethal toxicity bioassays to find the 96 hr LC 50 of copper and mercury for the fish Macrones gglig. The experimental results indicated that of the two metals tested, copper was more toxic than mercury.Chapter 3. The effect of copper and mercury on the haemoglobin, haematocrit, erythrocyte count, MCV, MCH and MCHC was studied.Chapter 4. The glycogen and protein contents of liver and muscle after exposure to copper and mercury were studied. There was a significant decrease of glycogen in the liver and muscle of metal treated fishes.Chapter 5. The histopathological changes of the tissues like liver, kidney and gill after exposure to copper and mercury were studied.
Resumo:
Scientists throughout the world are in search of a better methodology to reduce the use of environmentally hazardous chemicals common in industries .A significant contribution in this field is given by different redox catalysts in oxidation reactions. The oxidation of organic substrates represents one of the most important industrial chemical reactions, explaining the significant efforts invested in the research and development of new heterogeneous catalysts with increased activities and selectivities in these type reactions[l-4|. Hence liquid phase reactions like epoxidation of cylcohexene and hydroxylation of phenol were carried out with a new outlook in the challenge using CeO2/TiO;; and CuO/TiO2 catalysts denoted as TiO2-Ce as TiO2-Cu respectively in this work. Also different wt% of metals incorporated titania catalysts like 3, 6, 9 wt% CeO2/TiO; and CuO/TiO;were subjected to the present study .The interaction between metal oxides and the oxide supports have attracted much attention because of the wide applications of supported metal oxide systems[7,8]. It is well known that supported oxides of transition metals are widely used as catalysts for various reactions. Titania as well its metal modified catalysts systems afford high activity and selectivity in the liquid phase epoxidation of cyclohexene[9]. Cyclohexene epoxide is obtained as the major product during the reaction with small amounts of allylic substitution products.This chapter gives an idea about the liquid phase oxidation reactions like epoxidation of cylcohexene and hydroxylation of phenol in which many industrially important products are formed. Here discusses about the redox properties of the ceria and copper incorporated titania catalysts.The epoxidation of cyclohcxene is carried out efficiently over the prepared systems with the selective formation of cyclohexane epoxide. This reaction hints that it might be possible to create cleaner nylon chemistry. The total acidity of the prepared systems plays an important role in determining the catalytic activity in the dehydrogenation of cyclohexane and cyclohexene. The total acidity of the prepared systems plays an important role in determining the catalytic activity in the dehydrogenation of cyclohexane and cyclohexene.
Resumo:
In India industrial pollution has become a subject of increasing concern.Incidents of industrial pollution have been reported from many parts of the country. Cochin, the collection site of the present study, being the industrial capital of Kerela is also a harbour, is vulnerable to pollution by trace metal contaminants. In the recent times, pollutants of greatest concern in the aquatic environment are those which are persistent such as toxic heavy metals and the chlorinated hydrocarbons which include insecticides and pesticides.The animals collected from the clam bed situated on the northern side af Cochin bermouth are subject to wide fluctuations in salinity both seasonal and tidal. also; salinity is considered as an important parameter influencing the.-physiological functioning of an organism. Hence, the salinity tolerance of the animal is worked out. Considering the potential vulnerability of Cochin backwaters to heavy metal pollution, the impact of heavy metal copper (II) on the bivalve Sunetta sripta was conceived. Static bioassays were conducted for the determination of the sublethal concentrations of the metal as a preliminary step towards the toxicity studies. Oxygen consumption and filtration rate which are considered as reliable sublethal toxicity indices were employed for investigating the toxic effects of the metal. Bioaccumulation, a physiological phenomenon which can be of importance from the public health point of view, and also in the assessment of environmental quality is also dealt with.
Resumo:
PP has been getting much attention over the years because it is a very durable polymer commonly used in aggressive environments including automotive battery casings, fuel containers etc. They are used to make bottles, fibers for clothing, components in cars etc. However, it has some shortcomings such as low dimensional and thermal stability. Materials such as metal oxides with sizes of the order 1–50 nm have received a great deal of attention because of their versatile applications in polymer/ inorganic nanocomposites, optoelectronic devices, biomedical materials, and other areas. They are stable under harsh process conditions and also regarded as safe materials to human beings and animals. In the present investigation, PP is modified by incorporating metal oxide nanoparticles such as ZnO and TiO2 by simple melt mixing method. Melt spinning method was used to prepare PP/metal oxide nanocomposite fibers. Various studies have been carried out on these composites and fibers. In the first part of the study, ZnO nanoparticles were prepared from ZnCl2 and NaOH in presence of chitosan, PVA, ethanol and starch. This is a simple and inexpensive method compared to other methods. Change in morphology and particle size of ZnO were studied. Least particle size was obtained in chitosan medium. The particles were characterized by using XRD, SEM, TEM, TGA and EDAX. Antibacterial properties of ZnO prepared in chitosan medium (NZO) and commercial zinc oxide (CZO) were evaluated using a gram positive and a gram negative bacteria