972 resultados para contamination, environmental


Relevância:

20.00% 20.00%

Publicador:

Resumo:

26 p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

22 p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chesapeake and Delaware Canal is a man-made waterway connecting the upper Chesapeake Bay with the Delaware Bay. It started in 1829 as a private barge canal with locks, two at the Delaware end, and one at the Chesapeake end. For the most part, natural tidal and non-tidal waterways were connected by short dredged sections to form the original canal. In 1927, the C and D Canal was converted to a sea-level canal, with a controlling depth of 14 feet, and a width of 150 feet. In 1938 the canal was deepened to 27 feet, with a channel width of 250 feet. Channel side slopes were dredged at 2.5:1, thus making the total width of the waterway at least 385 feet in those segments representing new cuts or having shore spoil area dykes rising above sea level. In 1954 Congress authorized a further enlargement of the Canal to a depth of 35 feet and a channel width of 450 feet. (pdf contains 27 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is a summary for the general reader, rather than an in-depth review, and attempts to define, as quantitatively as possible, the habitat requirements of salmon and trout and then to relate them to the main ways in which man's activity can influence the survival and growth of these fishes. Frequent text references to an extensive body of published work have been avoided, although a selective bibliography has been included which lists some of the main work upon which the text depends. This article deals only with the freshwater part of the life cycle, and the coverage has some bias towards England and Wales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1990, "BICER" or the Baikal International Centre for Ecological Research was created to foster collaborative research on Lake Baikal. The British effort in BICER was initiated and is administered by the Royal Society, London. Much of the on-going research effort is now focussed on environmental change, as there is increasing concern about recent changes in the lake's unique ecosystem that could be linked with the effects of water pollution from catchment effluents. Monitoring studies of the phytoplankton in Lake Baikal's southern basin indicate that several species have increased in abundance since the mid-70's. Diatoms in Lake Baikal sediments are also being studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examination of 40 time series of multidisciplinary environmental variables from the Pacific Ocean and the Americas, collected in 1968 to 1984, demonstrated the remarkable consistency of a major climate-related, step-like change in 1976. To combine the 40 variables (e.g., air and water temperatures, Southern Oscillation, chlorophyll, geese, salmon, crabs, glaciers, atmospheric dust, coral, carbon dioxide, winds, ice cover, Bering Strait transport) into a single time series, standard variants of individual annual values (subtracting the mean and dividing by a standard deviation) were averaged. Analysis of the resulting time series showed that the single step in 1976, separating the 1968-1975 period from the 1977-1984 period, accounted for 89% of variance within the composite time series. Apparently, one of the Earth's large ecosystems occasionally undergoes large abrupt shifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This brief paper discusses the assumption that watercourses might be harbouring a chemical(s) affecting the sexual development in fish. Male fish was found with the oestrogen-dependent blood protein, vitellogenin, usually found only in maturing females. The author examines a number of man-made chemicals present in the environment have been found to be oestrogenic. The paper concludes that rivers contain environmental oestrogens that are capable of causing disruptions in the sexual development of fish. Whether or not these environmental oestrogens are causing a widespread disruption in reproduction in wild fish, however, has yet to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes a wastewater electrolysis cell (WEC) for on-site treatment of human waste coupled with decentralized molecular H2 production. The core of the WEC includes mixed metal oxides anodes functionalized with bismuth doped TiO2 (BiOx/TiO2). The BiOx/TiO2 anode shows reliable electro-catalytic activity to oxidize Cl- to reactive chlorine species (RCS), which degrades environmental pollutants including chemical oxygen demand (COD), protein, NH4+, urea, and total coliforms. The WEC experiments for treatment of various kinds of synthetic and real wastewater demonstrate sufficient water quality of effluent for reuse for toilet flushing and environmental purposes. Cathodic reduction of water and proton on stainless steel cathodes produced molecular H2 with moderate levels of current and energy efficiency. This thesis presents a comprehensive environmental analysis together with kinetic models to provide an in-depth understanding of reaction pathways mediated by the RCS and the effects of key operating parameters. The latter part of this thesis is dedicated to bilayer hetero-junction anodes which show enhanced generation efficiency of RCS and long-term stability.

Chapter 2 describes the reaction pathway and kinetics of urea degradation mediated by electrochemically generated RCS. The urea oxidation involves chloramines and chlorinated urea as reaction intermediates, for which the mass/charge balance analysis reveals that N2 and CO2 are the primary products. Chapter 3 investigates direct-current and photovoltaic powered WEC for domestic wastewater treatment, while Chapter 4 demonstrates the feasibility of the WEC to treat model septic tank effluents. The results in Chapter 2 and 3 corroborate the active roles of chlorine radicals (Cl•/Cl2-•) based on iR-compensated anodic potential (thermodynamic basis) and enhanced pseudo-first-order rate constants (kinetic basis). The effects of operating parameters (anodic potential and [Cl-] in Chapter 3; influent dilution and anaerobic pretreatment in Chapter 4) on the rate and current/energy efficiency of pollutants degradation and H2 production are thoroughly discussed based on robust kinetic models. Chapter 5 reports the generation of RCS on Ir0.7Ta0.3Oy/BixTi1-xOz hetero-junction anodes with enhanced rate, current efficiency, and long-term stability compared to the Ir0.7Ta0.3Oy anode. The effects of surficial Bi concentration are interrogated, focusing on relative distributions between surface-bound hydroxyl radical and higher oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Growth and condition of fish are functions of available food and environmental conditions. This led to the idea of using fish as a “consumption sensor” for the measurement of food intake over a defined period of time. A bio-physical model for the estimation of food consumption was developed based on the von Bertalanffy model. Whereas some of the input variables of the model, the initial and final lengths and masses of a fish and the temperature within the time period considered can easily be measured, internal characteristics of the species have to be determined indirectly. Three internal parameters are used in the model: the maintenance consumption at 0°C, the temperature dependence of this consumption and the food efficiency, the percentage of the ingested food utilized. Estimates of the parameters for a given species can be determined by feeding experiments. Here, data from published feeding experiments on juvenile cod, Gadus morhua L., were used to validate the model. The average of the relative error for the food intake predicted by the model for individual fish was about 24 %, indicating that fish used the food with different efficiencies. However, grouping the fish according to size classes and temperature lowered the relative error of the predicted food intake for the group to typically 5 %. For a group containing all fish of the feeding experiment the relative prediction error was about 2 %. Zusammenfassung Wachstum und Kondition der Fische sind von der verfügbaren Nahrung und von Umweltbedingungen abhängig. Dies führte zur Idee, Fisch als „Konsum-Sensor“ für die Messung der Nahrungsaufnahme über einen definierten Zeitraum zu verwenden. Auf Grundlage des von Bertalanffy-Modells wurde ein bio-physikalisches Modell zur Schätzung der Futteraufnahme entwickelt. Während einige der Eingangsgrößen des Modells leicht gemessen werden können (Anfangs- und Endlänge und -körpermasse der Fische und die Temperatur innerhalb des betrachteten Zeitraum), können interne Parameter der betrachteten Art nur indirekt bestimmt werden. Drei interne Parameter werden in dem Modell verwendet: Die Erhaltungskonsumtion bei 0° C, die Temperaturabhängigkeit dieser Rate und der Wirkungsgrad der Nahrung (der Anteil der Nahrung ,der aufgenommen und verwendet und nicht ungenutzt wieder ausgeschieden wird). Die Modellparameter für eine bestimmte Art können durch Fütterungsversuche bestimmt werden. Um das Modell zu validieren wurden Daten aus veröffentlichten Fütterungsversuchen mit juvenilen Kabeljau (Gadus morhua L.) verwendet. Modell und Wirklichkeit weichen in der Regel voneinander ab. Der durchschnittliche relative Fehler der durch das Modell vorhergesagten Nahrungsaufnahme betrug für Einzelfische etwa 24%, was darauf hinweist, dass einzelne Fisch die Nahrung mit unterschiedlichen Wirkungsgraden verwerten. Allerdings senkte die Gruppierung der Fische nach Größenklassen und Temperatur den relativen Vorhersagefehler für die Nahrungsaufnahme der Gruppe auf etwa 5%. Für alle Fische im Fütterungsversuch ist der relative Vorhersagefehler etwa 2%.