998 resultados para concrete fracture
Resumo:
The objectives of this study were to determine the fracture toughness of adhesive interfaces between dentine and clinically relevant, thin layers of dental luting cements. Cements tested included a conventional glass-ionomer, F (Fuji I), a resin-modified glass-ionomer, FP (Fuji Plus) and a compomer cement, D (DyractCem). Ten miniature short-bar chevron notch specimens were manufactured for each cement, each comprising a 40 µm thick chevron of lute, between two 1.5 mm thick blocks of bovine dentine, encased in resin composite. The interfacial KIC results (MN/m3/2) were median (range): F; 0.152 (0.14-0.16), FP; 0.306 (0.27-0.37), D; 0.351 (0.31-0.37). Non-parametric statistical analysis showed that the fracture toughness of F was significantly lower (p
Time for treating bone fracture using rhBMP-2: a randomised placebo controlled mouse fracture trial.
Resumo:
Although the mechanisms of osteoinduction by bone morphogenic proteins (BMPs) are increasingly understood, the most appropriate time to administer BMPs exogenously is yet to be clarified.The purpose of this study was to investigate when BMP may be administered to a fracture arena to maximise the enhancement of healing.Forty mice with externally fixed left femoral fractures were randomised into four groups: Group I, the control group was given a placebo of 30 ll saline at day 0; Groups II, III and IV were given 30 ll saline plus 2.5 lg rhBMP-2, at post-operative days 0, 4 or 8, respectively.Sequential radiographs were taken at days 0, 8, 16.On day 22 the mice were sacrificed and both femora were harvested for biomechanical assessment in 3-point bending and histological evaluation.Radiographic analysis indicated that healing of fractures in Groups II and III was significantly greater (p <0.05) than those in Groups I and IV, at both 16 and 22 days post-fracture. The highest median bone mineral content at the fracture site was evidenced in Group III and II.Furthermore, Group III also had the highest relative ultimate load values, followed by Groups II, IV and I.Greater percentage peak loads were observed between Group I and both Groups II and III (p <0.05). Histological examination confirmed that at 22 days post-fracture, only fractures in Groups II and III had united with woven bone, and Groups I and IV still had considerable amounts of fibrous tissue and cartilage at the fracture gap.Data presented herein indicates that there is a time after fracture when rhBMP administration is most effective, and this may be at the time of surgery as well as in the early fracture healing phases.
Resumo:
Fifty-two CFLP mice had an open femoral diaphyseal osteotomy held in compression by a four-pin external fixator. The movement of 34 of the mice in their cages was quantified before and after operation, until sacrifice at 4, 8, 16 or 24 days. Thirty-three specimens underwent histomorphometric analysis and 19 specimens underwent torsional stiffness measurement. The expected combination of intramembranous and endochondral bone formation was observed, and the model was shown to be reliable in that variation in the histological parameters of healing was small between animals at the same time point, compared to the variation between time-points. There was surprisingly large individual variation in the amount of animal movement about the cage, which correlated with both histomorphometric and mechanical measures of healing. Animals that moved more had larger external calluses containing more cartilage and demonstrated lower torsional stiffness at the same time point. Assuming that movement of the whole animal predicts, at least to some extent, movement at the fracture site, this correlation is what would be expected in a model that involves similar processes to those in human fracture healing. Models such as this, employed to determine the effect of experimental interventions, will yield more information if the natural variation in animal motion is measured and included in the analysis.
Resumo:
We hypothesise that following a bone fracture there is systemic recruitment of bone forming cells to a fracture site. A rabbit ulnar osteotomy model was adapted to trace the movement of osteogenic cells. Bone marrow mesenchymal stem cells from 41 NZW rabbits were isolated, culture-expanded and fluorescently labelled. The labelled cells were either re-implanted into the fracture gap (Group A); into a vein (Group B); or into a remote tibial bone marrow cavity 48 h after the osteotomy (Group C) or 4 weeks before the osteotomy was established (Group D), and a control group (Group E) had no labelled cells given. To quantify passive leakage of cells to an injury site, inert beads were also co-delivered in Group B. Samples of the fracture callus tissue and various organs were harvested at discrete sacrifice time-points to trace and quantify the labelled cells. At 3 weeks following osteotomy, the number of labelled cells identified in the callus of Group C, was significantly greater than following IV delivery, Group B, and there was no difference in the number of labelled cells in the callus tissues, between Groups C and A, indicating the labelled bone marrow cells were capable of migrating to the fracture sites from the remote bone marrow cavity. Significantly fewer inert beads than labelled cells were identified in Group B callus, suggesting some of the bone-forming cells were actively recruited and selectively chosen to the fracture site, rather than passively leaked into the circulation and to bone injury site. This investigation supports the hypothesis that some osteoblasts involved in fracture healing were systemically mobilised and recruited to the fracture from remote bone marrow sites. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
A series of short and long term service load tests were undertaken on the sixth floor of the full-scale, seven storey, reinforced concrete building at the Large Building Test Facility of the Building Research Establishment at Cardington. By using internally strain gauged reinforcing bars cast into an internal and external floor bay during the construction process it was possible to gain a detailed record of slab strains resulting from the application of several arrangements of test loads. Short term tests were conducted in December 1998 and long term monitoring then ensued until April 2001. This paper describes the test programmes and presents results to indicate slab behaviour for the various loading regimes.