992 resultados para completely monotonic function
Resumo:
The progress in genome sequencing has led to an increasing submission of uncharacterized hypothetical genes with the domain of unknown function, DUF985, in GenBank, and none of these genes is related to a known protein. We therefore underwent an experimental study to identify the function of a DUF985 domain-containing hypothetical gene BbDUF985 (GenBank Accession No. AY273818) isolated from amphioxus Branchiostoma belcheri (B. belcheri). BbDUF985 was successfully expressed in both prokaryotic and eukaryotic systems, and its recombinant proteins expressed in both systems definitely exhibited an activity of phosphoglucose isomerase (PGI). Both tissue-section in situ hybridization and immunohistochemistry demonstrated that BbDUF985 was expressed in a tissue-specific manner, with most abundant levels in the hepatic caecum and ovary. In CHO cells transfected with the expression plasmid pEGFP-N1/BbDUF985, the fusion protein was targeted in the cytoplasm of CHO cells, suggesting that BbDUF985 is a cytosolic protein. In contrast, Western blotting indicated that BbDUF985 was also present in amphioxus humoral fluids, suggesting that it exists as a secreted protein as well. Our study provided a framework for further understanding the biochemical properties and physiological function of DUF985-containing hypothetical proteins in other species. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The simulating wave nearshore (SWAN) wave model has been widely used in coastal areas, lakes and estuaries. However, we found a poor agreement between modeling results and measurements in analyzing the chosen four typical cases when we used the default parameters of the source function formulas of the SWAN to make wave simulation for the Bohai Sea. Also, it was found that at the same wind process the simulated results of two wind generation expressions (Komen, Janssen) demonstrated a large difference. Further study showed that the proportionality coefficient alpha in linear growth term of wave growth source function plays an unperceived role in the process of wave development. Based on experiments and analysis, we thought that the coefficient alpha should change rather than be a constant. Therefore, the coefficient alpha changing with the variation of friction velocity U (*) was introduced into the linear growth term of wave growth source function. Four weather processes were adopted to validate the improvement in the linear growth term. The results from the improved coefficient alpha agree much better with the measurements than those from the default constant coefficient alpha. Furthermore, the large differences of results between Komen wind generation expression and Janssen wind generation expression were eliminated. We also experimented with the four weather processes to test the new white-capping mechanisms based on the cumulative steepness method. It was found that the parameters of the new white-capping mechanisms are not suitable for the Bohai Sea, but Alkyon's white-capping mechanisms can be applicable to the Bohai Sea after amendments, demonstrating that this improvement of parameter alpha can improve the simulated results of the Bohai Sea.
Resumo:
A fine-grid model (1/6degrees) covering the South China Sea (SCS), East China Sea and Japan/East Sea, which is embedded into a coarse-grid (3degrees) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Comparison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water intrudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS Southern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.
Resumo:
Apostichopus japonicus is a common sea cucumber that undergoes seasonal inactivity phases and ceases feeding during the summer months. We used this sea cucumber species as a model in which to examine phenotypic plasticity of the digestive tract in response to food deprivation. We measured the body mass, gross gut morphology and digestive enzyme activities of A. japonicus before, during, and after the period of inactivity to examine the effects of food deprivation on the gut structure and function of this animal. Individuals were sampled semi-monthly from June to November (10 sampling intervals over 178 days) across temperature changes of more than 18 degrees C. On 5 September, which represented the peak of inactivity and lack of feeding, A. japonicus decreased its body mass, gut mass and gut length by 50%, 85%, and 70%, respectively, in comparison to values for these parameters preceding the inactive period. The activities of amylase, cellulase and lipase decreased by 77%, 98%, and 35% respectively, in comparison to mean values for these enzymes in June, whereas pepsin activity increased two-fold (luring the inactive phase. Alginase and trypsin activities were variable and did not change significantly across the 178-day experiment. With the exception of amylase and cellulase, all body size indices and digestive enzyme activities recovered and even surpassed the mean values preceding the inactive phase during the latter part of the experiment (October-November). Principal Component Analysis (PCA) utilizing the digestive enzyme activity and body size index data divided the physiological state of this cucumber into four phases: an active stage, prophase of inactivity peak inactivity, and a reversion phase. These phases are all consistent with previously suggested life stages for this species, but our data provide more defined characteristics of each phase. A. japonicus clearly exhibits phenotypic plasticity (or life-cycle staging) of the digestive tract during its annual inactive period. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The rye B chromosome is a supernumerary chromosome that increases in number in its host by directed postmeiotic drive. Two types of rye B chromosomes that had been introduced into common wheat were dissected into separate segments by the gametocidal system to produce a number of rearranged B chromosomes, such as telosomes, terminal deletions and translocations with wheat chromosomes. A total of 13 dissected B chromosomes were isolated in common wheat, and were investigated for their nondisjunction. properties. Rearranged B chromosomes, separated from their B-specific repetitive sequences on the distal part of the long arm, did not undergo nondisjunction, and neither did a translocated wheat chromosome carrying a long-arm distal segment containing the B-specific repetitive sequences. However, such rearranged B chromosomes, missing their B-specific sequences could undergo nondisjunction when they coexisted with the standard B chromosome or a wheat chromosome carrying the B-specific sequences. Deficiencies of the short arm did not completely abolish the nondisjunction properties of the B chromosome, but did reduce the frequency of nondisjunction. These results confirmed previous suggestions that the directed nondisjunction of the rye B chromosome is controlled by two elements, pericentromeric sticking sites and a trans-acting element carried at the distal region of the long arm of the B chromosome. Additionally, it is now shown that the distal region of the long arm of the B chromosome which provides this function is that which carries the B-specific repetitive sequences.
Resumo:
There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.
Resumo:
In this paper a systematic study of radiolarian from surface sediments of all the South China Sea (SCS) has initially been done for its deposit ecology, biogeography and paleoenvironment significance. The paleoenvironment information obtained by radiolarian analysis and other sedimentary method for core samples is also made use as the synthesis proxy for revealing the paleoenvironment changes in the SCS and the relations of it with the past globe change during last 200ka. Some results come out of this study as: 1) Radiolarian skeleton chemistry composition and skeleton morphological features were analyzed, chiefly dividing them as 15 types of basic morphological features: 2) Analysis of biogeographical feature demonstrates that the fauna in SCS obviously belonging to a transitional type of west Pacific - Indian Ocean and has a particularity of itself: 3) Tendency of radiolarian population distribution is lower in shallow continental shelf area, increasing gradually toward the abyssal region; 4) Nine character boundaries of radiolarian depth distribution in the sediments from whole the South China Sea may be recognized; 5)Two radiolarian transfer functions for paleotemperature and paleo-primary productivity in the South China Sea have also been established respectively. The equation of transfer function for winter paleotemperature has only an average estimated error of 0.18678 ℃ and the equation for paleo-primary productivity has the calculation accuracy of 85.31%; 6) Changes of radiolarian individuals, numbers of species and H(S) values in core NS93-5 show the completely different oceanic geographical circumstance and ecology structure in the Last Maximum Glacial with present; 7) The abundance variation of some raiolarian warm species and cold species indicate the changes of water masse features along with the paleoenvironment evolution, showing that this sea area clearly is controlled in 6 issues of oxygen isotopes by the cold water masses; 8) By comparative analysis of δ ~(18)O curves with GISP2;s ice core can core 17940 of the northern SCS, the occurring characters of D/O's events 1-21 and Heinrich's events H1-H6 have been revealed in this sea area by core NS93-5, which prove the existence of paleoclimatic tele-connections between the southern SCS and Arctic region since about 200ka BP.
Resumo:
Saprolite is the residual soil resulted from completely weathered or highly weathered granite and with corestones of parent rock. It is widely distributed in Hong Kong. Slope instability usually happens in this layer of residual soil and thus it is very important to study the engineering geological properties of Saprolite. Due to the relic granitic texture, the deformation and strength characteristics of Saprolite are very different from normal residual soils. In order to investigate the effects of the special microstructure on soil deformation and strength, a series of physical, chemical and mechanical tests were conducted on Saprolite at Kowloon, Hong Kong. The tests include chemical analysis, particle size analysis, mineral composition analysis, mercury injection, consolidation test, direct shear test, triaxial shear test, optical analysis, SEM & TEM analysis, and triaxial shear tests under real-time CT monitoring.Based on the testing results, intensity and degree of weathering were classified, factors affecting and controlling the deformation and strength of Saprolite were identified, and the interaction between those factors were analyzed.The major parameters describing soil microstructure were introduced mainly based on optical thin section analysis results. These parameters are of importance and physical meaning to describe particle shape, particle size distribution (PSD), and for numerical modeling of soil microstructure. A few parameters to depict particle geometry were proposed or improved. These parameters can be used to regenerate the particle shape and its distribution. Fractal dimension of particle shape was proposed to describe irregularity of particle shapes and capacity of space filling quantitatively. And the effect of fractal dimension of particle shape on soil strength was analyzed. At the same time, structural coefficient - a combined parameter which can quantify the overall microstructure of rock or soil was introduced to study Saprolite and the results are very positive. The study emphasized on the fractal characteristics of PSD and pore structure by applying fractal theory and method. With the results from thin section analysis and mercury injection, it was shown that at least two fractal dimensions Dfl(DB) and Df2 (Dw), exist for both PSD and pore structure. The reasons and physical meanings behind multi-fractal dimensions were analyzed. The fractal dimensions were used to calculate the formation depth and weathering rate of granite at Kowloon. As practical applications, correlations and mathematical models for fractal dimensions and engineering properties of soil were established. The correlation between fractal dimensions and mechanical properties of soil shows that the internal friction angle is mainly governed by Dfl 9 corresponding to coarse grain components, while the cohesion depends on Df2 , corresponding to fine grain components. The correlations between the fractal dimension, friction angle and cohesion are positive linear.Fractal models of PSD and pore size distribution were derived theoretically. Fragmentation mechanism of grains was also analyzed from the viewpoint of fractal. A simple function was derived to define the theoretical relationship between the water characteristic curve (WCC) and fractal dimension, based on a number of classical WCC models. This relationship provides a new analytical tool and research method for hydraulic properties in porous media and solute transportation. It also endues fractal dimensions with new physical meanings and facilitates applications of fractal dimensions in water retention characteristics, ground water movement, and environmental engineering.Based on the conclusions from the fractal characteristics of Saprolite, size effect on strength was expressed by fractal dimension. This function is in complete agreement with classical Weibull model and a simple function was derived to represent the relationship between them.In this thesis, the phenomenon of multi-fractal dimensions was theoretically analyzed and verified with WCC and saprolite PSD results, it was then concluded that multi-fractal can describe the characteristics of one object more accurately, compared to single fractal dimension. The multi-fractal of saprolite reflects its structural heterogeneity and changeable stress environment during the evolution history.
Resumo:
To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degreesC was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degreesC (k'(30)/k'(40)) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C-18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The cognition and memory functions of the Basal Ganglia have been the focus of contemporary cognitive neuroscience researches. This study, from neuroanatomical and neurophysiological point of view, thoroughly surveyed the recent relevant research progress, carefully examined the evidences of the neurological basis for the Basal Ganglia possessing or participating cognition or memory functions. Moreover, it reviewed recent achievements on the cognitive functions of the basal ganglia based on researches on rodent animals, primate animals and human beings. Then it presented a series of experiments conducted, by neuropsychological and cognitive psychological methods, on neurological patients with focal lesions to the basal ganglia or combining with bilateral hippocampus or thalamus impaired to explore what the role of the basal ganglia play in human explicit and implicit memory. It was found that the lesions to the basal ganglia partially handicapped explicit verbal memory and completely impaired perceptual priming. It was also found that right cerebral cortex dysplasia but basal ganglia spared had no effects on priming tasks performances. The results suggested that the basal ganglia contain or accommodate higher cognitive functions and further suggested that priming be irrelevant to right cerebral cortex. It was posited that the basal ganglia, on the basis of interaction with prefrontal or temporal cortices, mediate movement function as well as cognition and memory functions.
Resumo:
Nonlinear multivariate statistical techniques on fast computers offer the potential to capture more of the dynamics of the high dimensional, noisy systems underlying financial markets than traditional models, while making fewer restrictive assumptions. This thesis presents a collection of practical techniques to address important estimation and confidence issues for Radial Basis Function networks arising from such a data driven approach, including efficient methods for parameter estimation and pruning, a pointwise prediction error estimator, and a methodology for controlling the "data mining'' problem. Novel applications in the finance area are described, including customized, adaptive option pricing and stock price prediction.
Resumo:
RESUMO: A necessidade de controle adequado de plantas voluntárias de soja (Glycine max) tem se intensificado nos últimos anos em função da incidência de doenças da soja, principalmente a ferrugem asiática ( Phakopsora pachyrhizi). Além disso, a competição imposta por essas plantas pode causar perdas de produtividade em culturas implantadas na entressafra. Dois experimentos foram conduzidos em condições de campo no município de Rio Verde, Goiás, a fim de avaliar o controle de plantas voluntárias de soja infestantes da cultura do girassol (Helianthus annuus), semeado na época de safrinha. O delineamento experimental foi em blocos casualizados, com quatro repetições. Os tratamentos aplicados no experimento 1 foram a testemunha capinada, a testemunha sem capina, sulfentrazone 25 g i.a. ha-1, sulfentrazone 50 g i.a. ha -1, sulfentrazone 100 g i.a. ha-1 e sulfentrazone 150 g i.a. ha-1. No experimento 2, foram aplicados os mesmos tratamentos mencionados e acrescentadas as doses de 200 g i.a. ha-1 e 250 g i.a. ha-1 do mesmo herbicida. O sulfentrazone não proporciona morte completa das plantas voluntárias de soja. No entanto, há uma interrupção temporária do crescimento da soja permitindo o arranque inicial da cultura de girassol. As doses de sulfentrazone que variaram de 114,2 a 158,8 g i.a. ha-1 proporcionaram os maiores rendimentos de girassol, evitando a competição das plantas voluntárias de soja com essa cultura. ABSTRACT: The control of volunteer soybean plants (Glycine max ) has intensified in recent years in function of the increasing incidence of soybean diseases mainly the Asian soybean rust (Phakopsora pachyrhizi). Moreover, the competition of volunteer soybean plants can cause yield losses in successive crops. Two experiments were conducted under field conditions in Rio Verde, Goiás State, Brazil, in order to evaluate the control of volunteer soybean plants in sunflower (Helianthus annuus). The experimental design was a randomized complete block, with four replications. Treatments applied on experiment 1 were: hoed check; unhoed check, sulfentrazone 25 g ai ha-1, sulfentrazone 50 g ai ha-1, sulfentrazone 100 g ai ha-1, sulfentrazone 150 g ai ha-1. The treatments applied on experiment 2 were the same doses described on experiment 1 plus sulfentrazone 200 g ai ha-1 and 250 g ai ha-1. The sulfentrazone is unable to completely kill the volunteer soybean plants. However, there is a temporary stoppage of soybean growth enabling the initial startup of the sunflower plants. Doses ranging from 114.2 to 158.8 g ai ha-1 provided the highest sunflower yield, avoiding the competition of the volunteer soybean plants.
Resumo:
Polycystic Ovary Syndrome (PCOS) is a complex disorder encompassing reproductive and metabolic dysfunction. Ovarian hyperandrogenism is an endocrine hallmark of human PCOS. In animal models, PCOS-like abnormalities can be recreated by in utero over-exposure to androgenic steroid hormones. This thesis investigated pancreatic and adrenal development and function in a unique model of PCOS. Fetal sheep were directly exposed (day 62 and day 82 of gestation) to steroidal excesses - androgen excess (testosterone propionate - TP), estrogen excess (diethylstilbestrol - DES) or glucocorticoid excess (dexamethasone - DEX). At d90 gestation there was elevated expression of genes involved in β- cell development and function: PDX-1 (P<0.001), and INS (P<0.05), INSR (P<0.05) driven by androgenic excess only in the female fetal pancreas. β- cell numbers (P<0.001) and in vitro insulin secretion (P<0.05) were also elevated in androgen exposed female fetuses. There was a significant increase in insulin secreting β-cell numbers (P<0.001) and in vivo insulin secretion (glucose stimulated) (P<0.01) in adult female offspring, specifically associated with prenatal androgen excess. At d90 gestation, female fetal adrenal gene expression was perturbed by fetal estrogenic exposure. Male fetal adrenal gene expression was altered more dramatically by fetal glucocorticoid exposure. In female adult offspring from androgen exposed pregnancies there was increased adrenal steroidogenic gene expression and in vivo testosterone secretion (P<0.01). This highlights that the adrenal glands may contribute towards excess androgen secretion in PCOS, but such effects might be secondary to other metabolic alterations driven by prenatal androgen exposure, such as excess insulin secretion Thus there may be dialogue between the pancreas and adrenal gland, programmed during early life, with implications for adult health Given both hyperinsulinaemia and hyperandrogenism are common features in PCOS, we suggest that their origins may be at least partially due to altered fetal steroidal environments, specifically excess androgenic stimulation
Resumo:
This chapter examines the role of the advanced nurse practitioner (ANP) within the domains of practice identified by the Royal College of Nursing (2002) as the teaching and coaching function. (Note that this is referred to by the NMC as the education function. It approaches the analysis against the backdrop of three policy documents: The Expert Patient: a new approach to chronic disease management for the 21st century(DoH 2001), Choosing Health: making healthy choices easier (DoH 2004), Our health, our care, our say (DoH 2006). It draws into the frame the experiences of ANP students as they work with patients, clients and carers, with the intention of enabling health and managing illness. It uses examples from a range of everyday practice setting to illustrate the inherent challenges of the teaching and coaching function of the ANP, at the same time as recognising its significance if patients, clients and carers are to be enabled to make choices that might optimize their well-being. Before this, however, some statistics are presented to focus thinking on why education is an invaluable component of advanced nursing practice.