940 resultados para cognitif-behavioral


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl2 (0.1nmol/100nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective 1-adrenoceptor antagonist WB4101 (15nmol/100nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the 2-adrenoceptor antagonist RX821002 or the -adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that 1-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local 1-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular prion protein (PrPC) is a neuronal anchored glycoprotein that has been associated with distinct functions in the CNS, such as cellular adhesion and differentiation, synaptic plasticity and cognition. Here we investigated the putative involvement of the PrPC in the innate fear-induced behavioural reactions in wild-type (WT), PrPC knockout (Prnp(0/0)) and the PrPC overexpressing Tg-20 mice evoked in a prey versus predator paradigm. The behavioural performance of these mouse strains in olfactory discrimination tasks was also investigated. When confronted with coral snakes, mice from both Prnp(0/0) and Tg-20 strains presented a significant decrease in frequency and duration of defensive attention and risk assessment, compared to WT mice. Tg-20 mice presented decreased frequency of escape responses, increased exploratory behaviour, and enhancement of interaction with the snake, suggesting a robust fearlessness caused by PrPC overexpression. Interestingly, there was also a discrete decrease in the attentional defensive response (decreased frequency of defensive alertness) in Prnp(0/0) mice in the presence of coral snakes. Moreover, Tg-20 mice presented an increased exploration of novel environment and odors. The present findings indicate that the PrPC overexpression causes hyperactivity, fearlessness, and increased preference for visual, tactile and olfactory stimuli-associated novelty, and that the PrPC deficiency might lead to attention deficits. These results suggest that PrPC exerts an important role in the modulation of innate fear and novelty-induced exploration. (C) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are contradictory results concerning the effects of systemic injections of cannabinoid agonists in anxiety-induced behavioral changes. Direct drug administration into brain structures related to defensive responses could help to clarify the role of cannabinoids in these changes. Activation of cannabinoid CB, receptors in the dorsolateral periaqueductal gray induces anxiolytic-like effects in the elevated plus maze. The aim of this work was to verify if facilitation of endocannabinoid-mediated neurotransmission in this region would also produce anxiolytic-like effects in another model of anxiety, the Vogel conflict test. Male Wistar rats (n = 5-9/group) with cannulae aimed at the dorsolateral periaqueductal gray were water deprived for 24 h and pre-exposed to the apparatus where they were allowed to drink for 3 min. After another 24 h-period of water deprivation, they received the microinjections and, 10 min later, were placed into the experimental box. in this box an electrical shock (0.5 nnA, 2 s) was delivered in the spout of a drinking bottle at every twenty licks. The animals received a first microinjection of vehicle (0.2 mu l) or AM251 (a cannabinoid CB1 receptor antagonist; 100 pmol) followed, 5 min later, by a second microinjection of vehicle, anandamide (an endocannabinoid, 5 pmol), AM404 (an inhibitor of anandamide uptake, 50 pmol) or URB597 (an inhibitor of Fatty Acid Amide Hydrolase, 0.01 or 0.1 nmol). Anandamide, AM404 and URB597 (0.01 nmol) increased the total number of punished licks. These effects were prevented by AM251. The results give further support to the proposal that facilitation of CB1 receptor-mediated endocannabinoid neurotransmission in the dorsolateral periaqueductal gray modulates defensive responses. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The medial amygdaloid nucleus (MeA) is involved in the modulation of physiological and behavioral processes, as well as regulation of the autonomic nervous system. Moreover, MeA electrical stimulation evokes cardiovascular responses. Thus, as noradrenergic receptors are present in this structure, the present study tested the effects of local noradrenaline (NA) microinjection into the MeA on cardiovascular responses in conscious rats. Moreover, we describe the types of adrenoceptor involved and the peripheral mechanisms involved in the cardiovascular responses. Increasing doses of NA (3, 9, 27 or 45 nmol/100 nL) microinjected into the MeA of conscious rats caused dose-related pressor and bradycardic responses. The NA cardiovascular effects were abolished by local pretreatment of the MeA with 10 nmol/100 nL of the specific alpha(2)-receptor antagonist RX821002, but were not affected by local pretreatment with 10 nmol/100 nL of the specific alpha(1)-receptor antagonist WB4101. The magnitude of pressor response evoked by NA microinjected into the MeA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), and blocked by intravenous pretreatment with the selective V(1)-vasopressin antagonist dTyr(CH(2))(5)(Me)AVP (50 mu g/kg). In conclusion, our results show that microinjection of NA into the MeA of conscious rats activates local alpha(2)-adrenoceptors, evoking pressor and bradycardic responses, which are mediated by vasopressin release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ventral portion of medial prefrontal cortex (vMPFC) is involved in contextual fear-conditioning expression in rats. In the present study, we investigated the role of local N-methyl-D-aspartic acid (NMDA) glutamate receptors and nitric oxide (NO) in vMPFC on the behavioral (freezing) and cardiovascular (increase of arterial pressure and heart rate) responses of rats exposed to a context fear conditioning. The results showed that both freezing and cardiovascular responses to contextual fear conditioning were reduced by bilateral administration of NMDA receptor antagonist LY235959 (4 nmol/200 nL) into the vMPFC before reexposition to conditioned chamber. Bilateral inhibition of neuronal NO synthase (nNOS) by local vMPFC administration of the N omega-propyl-L-arginine (N-propyl, 0.04 nmol/200 nL) or the NO scavenger carboxy-PTI0 (1 nmol/200 A) caused similar results, inhibiting the fear responses. We also investigated the effects of inhibiting glutamate- and NO-mediated neurotransmission in the vMPFC at the time of aversive context exposure on reexposure to the same context. It was observed that the 1st exposure results in a significant attenuation of the fear responses on reexposure in vehicle-treated animals, which was not modified by the drugs. The present results suggest that a vMPFC NMDA-NO pathway may play an important role on expression of contextual fear conditioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is conflicting evidence concerning the role of the bed nucleus of the stria terminalis (BNST) in fear and anxiety-elicited behavior. Most of the studies investigating this role, however, employed irreversible lesions of this nucleus. The objective of the present study was to investigate the effects of an acute and reversible inactivation of the BNST in rats submitted to the Vogel conflict test (VCT) and contextual fear conditioning, two widely employed animal models that are responsive to prototypal anxiolytic drugs. Male Wistar rats were submitted to stereotaxic surgery to bilaterally implant cannulae into the BNST. Ten minutes before the test they received bilateral microinjections of cobalt chloride (COCl(2)) (1 mM/100 nL), a nonselective synapse blocker. COCl(2) produced anxiolytic-like effects in tests, increasing the number of punished licks in the VCT and decreasing freezing behavior and the increase in mean arterial blood pressure and heart rate of animals re-exposed to the context where they had received electrical foot shocks 24 h before. The results indicate that the BNST is engaged in behavioral responses elicited by punished stimuli and aversively conditioned contexts, reinforcing its proposed role in anxiety. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lack of effects of clomipramine on Fos and NADPH-diaphorase double-staining in the periaqueductal gray after exposure to an innate fear stimulus - nitric oxide (NO) acts as a neurotransmitter in the rat dorsolateral periaqueductal gray (dIPAG), a midbrain structure that modulates fear and defensive behavior. Since defensive reactions can be alleviated by anxiolytic/anti-panic drugs, the present study tested the effect of clomipramine, a serotonin re-uptake inhibitor, on the activation of NO-producing neurons in the dlPAG of rats exposed to a live predator. Double staining was performed using Fos immunohistochemistry and NADPH-diaphorase as techniques to mark neural activation and to detect NO-producing neurons, respectively. Male Wistar rats received acute or chronic (21 days) injections of saline or clomipramine (10 or 20 mg/kg/day) and were exposed to a live cat. The animals exhibited a robust defensive reaction accompanied by an increase in the number of Fos- and doublestained neurons in the dlPAG, suggesting that cat exposure activates NO-producing neurons. Such effects were not significantly attenuated by clomipramine treatments. The intensity of fear reaction correlated with the intensity of neural staining in the dlPAG, regardless the drug treatment. Thus, the present results reinforce the hypothesis that NO may coordinate defensive responses in the dIPAG and indicate that this mechanism may not be modulated by a serotonin re-uptake inhibitor. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale Conditioned fear to context causes freezing and cardiovascular changes in rodents and has been used to measure anxiety. It also activates the dorsolateral column of the periaqueductal gray (dlPAG). Microinjections of cannabinoid agonists into the dlPAG produced anxiolytic-like effects in the elevated plus maze, but the effects of these treatments on fear conditioning remains unknown. Objective The objective of this study was to verify if intra-dlPAG injection of the CB1 cannabinoid receptor agonist anandamide (AEA) or the anandamide transport inhibitor AM404 would attenuate behavioral (freezing) and cardiovascular (increase of arterial pressure and heart rate) responses of rats submitted to a contextual fear-conditioning paradigm. Materials and methods Male Wistar rats with cannulae aimed at the dlPAG were re-exposed to a chamber where they had received footshocks 48 h before. Fifteen minutes before the test, the animals received a first intra-dlPAG injection of vehicle or AM251, a CB1 receptor antagonist (100 pmol/200 nl), followed 5 min later by vehicle, AEA (5 pmol/200 nl) or AM404 (50 pmol/200 nl). Freezing and cardiovascular responses were recorded for 10 min. Results Freezing and cardiovascular responses were reduced by administration of either AEA or AM404 into the dlPAG before re-exposition to the aversively conditioned context. These effects were abolished when the animals were locally pretreated with AM251. The latter drug, even at a higher dose (300 pmol), was ineffective when administered alone into the dlPAG. Conclusion The results suggest that facilitation of endocannabinoid-mediated neurotransmission in the dlPAG, through activation of local CB1 receptors, attenuates the expression of contextual fear responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Granulocyte-colony stimulating factor (G-CSF) is a current pharmacological approach to increase peripheral neutrophil counts after anti-tumor therapies. Pain is most relevant side effect of G-CSF in healthy volunteers and cancer patients. Therefore, the mechanisms of G-CSF-induced hyperalgesia were investigated focusing on the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase). JNK (Jun N-terminal Kinase) and p38, and PI(3)K (phosphatidylinositol 3-kinase). G-CSF induced dose (30-300 ng/paw)-dependent mechanical hyperalgesia, which was inhibited by local post-treatment with morphine. This effect of morphine was reversed by naloxone (opioid receptor antagonist). Furthermore, G-CSF-induced hyperalgesia was inhibited in a dose-dependent manner by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI(3)K (wortmanin) inhibitors. The co-treatment with MAP kinase and PI(3)K inhibitors, at doses that were ineffective as single treatment, significantly inhibited G-CSF-induced hyperalgesia. Concluding, in addition to systemic opioids, peripheral opioids as well as spinal treatment with MAP kinases and PI(3)K inhibitors also reduce G-CSF-induced pain. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.