998 resultados para cobalt bromide catalyst
Resumo:
The addition of a suitable amount of PPh3 to PdCl2 or PdCl2(PhCN)(2) in situ can considerably increase the catalytic activity in the hydrogenation of nitrobenzene, while the catalytic activities of PdCl2 (reduced)+PPh3, PdCl2(PPh3)(2) and Pd(PPh3)(4) are very poor. The poisoning of catalyst by mercury indicates that the catalytically active species are composed of Pd(0) colloidal particles. Transmission electron micrographs show that the size of nanometric Pd(0) particles of PdCl2 with PPh3 added in situ is smaller than that of PhCl2(PPh3) or PdCl2 (reduced)+PPh3. A synergic effect of bimetallic catalysts such as PdCl2+nPPh(3)+NiCl2 (n= 0.5, 1) and PdCl2(PhCN)(2)+PPh3+FeCl3 gives rise to a further increase in the catalytic activity.
Resumo:
Carbonaceous deposits formed during the temperature-programmed surface reaction (TPSR) of methane dehydro-aromatization (MDA) over Mo/HZSM-5 catalysts have been investigated by TPH, TPCO2 and TPO, in combination with thermal gravimetric analysis (TG). The TPO profiles of the coked catalyst after TPSR of MDA show two temperature peaks: one is at about 776 K and the other at about 865 K. The succeeding TPH experiments only resulted in the diminishing of the area of the high-temperature peak, and had no effect on the area of the low-temperature peak. On the other hand, the TPO profiles of the coked catalyst after succeeding TPCO2 experiments exhibited obvious reduction in the areas of both the high-and low-temperature peaks, particularly in the area of the low-temperature peak. On the basis of TPSR, TPR and TPCO2 experiments and the corresponding TG analysis, quantitative analysis of the coke and the kinetics of its burning-off process have been studied. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The selective oxidation of ethylene to acetic acid was investigated on Pd-acid/support catalyst system. The catalytic activity is influenced strongly by the acidity of the catalyst. The stronger the catalyst acidity the higher the catalytic activity. The nature of the support also influences the activity of the catalyst substantially. The catalyst has highest activity when it exhibits highest acidity on silica.
Resumo:
We present a novel method for preparing an ultra-uniform Raney-Ni catalyst, which includes melt-quenching, hydrogen treatment and leaching in an alkali solution. The resultant catalyst shows superior activity in the reaction of cyclohexanone hydrogenation. X-ray diffraction (XRD) and XPS have been employed to characterize the catalysts. As demonstrated, the pretreatment with hydrogen caused a distinct phase transfer of the Ni-Al alloys, forming more of the Ni2Al3 component. In the subsequent leaching process, the Ni2Al3 component shows high activity and the resultant catalyst exhibits high surface areas and small pores. Moreover, metallic Al in the hydrogen-pretreated alloy appeared to be leached more easily and thus the aluminium species remaining on the catalyst surface is aluminium oxide predominantly, which serves as a matrix to stabilize active Ni species on the surface. Copyright (C) 2001 John Wiley & Sons, Ltd.