965 resultados para chemical waste management
Resumo:
Purpose: Considering the UK's limited capacity for waste disposal (particularly for hazardous/radiological waste) there is growing focus on waste avoidance and minimisation to lower the volumes of waste being sent to disposal. The hazardous nature of some waste can complicate its management and reduction. To address this problem there was a need for a decision making methodology to support managers in the nuclear industry as they identify ways to reduce the production of avoidable hazardous waste. The methodology we developed is called Waste And Sourcematter Analysis (WASAN). A methodology that begins the thought process at the pre-waste creation stage (i.e. Avoid). Design/methodology/ approach: The methodology analyses the source of waste, the production of waste inside the facility, the knock on effects from up/downstream facilities on waste production, and the down-selection of waste minimisation actions/options. WASAN has been applied to case studies with licencees and this paper reports on one such case study - the management of plastic bags in Enriched Uranium Residues Recovery Plant (EURRP) at Springfields (UK) where it was used to analyse the generation of radioactive plastic bag waste. Findings: Plastic bags are used in EURRP as a strategy to contain hazard. Double bagging of materials led to the proliferation of these bags as a waste. The paper reports on the philosophy behind WASAN, the application of the methodology to this problem, the results, and views from managers in EURRP. Originality/value: This paper presents WASAN as a novel methodology for analyzing the minimization of avoidable hazardous waste. This addresses an issue that is important to many industries e.g. where legislation enforces waste minimization, where waste disposal costs encourage waste avoidance, or where plant design can reduce waste. The paper forms part of the HSE Nuclear Installations Inspectorate's desire to work towards greater openness and transparency in its work and the development in its thinking.© Crown Copyright 2011.
Resumo:
The common occurrence of human derived contaminants like pharmaceuticals, steroids and hormones in surface waters has raised the awareness of the role played by the release of treated or untreated sewage in the water quality along sensitive coastal ecosystems. South Florida is home to many important protected environments ranging from wetlands to coral reefs which are in close proximity to large metropolitan cities. Since large portions of South Florida and most of the Florida Keys population are not served by modern sewage treatment plants and rely heavily on the use of inefficient septic systems; a comprehensive survey of selected human waste contamination markers is needed in these areas to assess water quality with respect to non-traditional micro-constituents. ^ This study reports the development and application of new sensitive and selective analytical methods for the fast screening of multiple wastewater tracers, classified as Emergent Pollutants of Concern (EPOC). Novel methods for the trace analysis of non-traditional markers of human-specific contamination such as aminopropanone were developed and used to assess the potential of non-traditional markers as wastewater tracers. ^ During our investigation, surface water samples collected from near shore environments along the South Florida were analyzed for fifteen hormones and steroids, and five commonly detected pharmaceuticals. The compounds most frequently detected were: coprostanol, cholesterol, estrone, β-estradiol, caffeine, triclosan and DEET. Concentrations of caffeine, bisphenol A and DEET were usually higher and more prevalent than the hormonal steroids. In general, it was found that common pharmaceuticals and steroids are widely present in major coastal environments in South Florida. It is also evident that aquatic bodies in heavily urbanized sectors such as the Miami River and Key Largo Harbor contain higher concentrations of several compounds while relatively open bay waters and agricultural areas show reduced chemical signatures. Concentrations of hormones in the Little Venice area of Marathon Key were above the Lowest Observable Effect Levels (LOELs) for several species, indicating that biological resources in this area are at risk. Water quality issues in some of these coastal water environments go beyond eutrophication, thus EPOC should be the target goal for future mitigation projects. ^
Resumo:
Two deep-well injection sites in south Florida, USA, inject an average of 430 million liters per day (MLD) of treated domestic fresh wastewater into a deep saline aquifer 900 m below land surface. Elevated levels of NH3 (highest concentration 939 µmol) in the overlying aquifer above ambient concentrations (concentration less than 30 µmol) were evidence of the upward migration of injected fluids. Three pathways were distinguished based on ammonium, chloride and bromide ratios, and temperature. At the South District Wastewater Treatment Plant, the tracer ratios showed that the injectate remained chemically distinct as it migrated upwards through rapid vertical pathways via density-driven buoyancy. The warmer injectate (mean 28°C) retained the temperature signal as it vertically migrated upwards; however, the temperature signal did not persist as the injectate moved horizontally into the overlying aquifers. Once introduced, the injectate moved slowly horizontally through the aquifer and mixed with ambient water. At the North District Wastewater Treatment Plant, data provide strong evidence of a one-time pulse of injectate into the overlying aquifers due to improper well construction. No evidence of rapid vertical pathways was observed at the North District Wastewater Treatment Plant.
Resumo:
The academic activities carried out at the School of Chemistry make indispensable to develop actions oriented toward the consolidation of a reagent and residue management system, especially in the teaching laboratories. The project “Management of reagents and residues in the teaching laboratories of the School of Chemistry” works under the Green Chemistry values which designs products and chemical processes that reduce or eliminate the use and production of dangerous substances, to benefit the environment. With a preventive vision, a change from the laboratory practices is looked to select those with less environmental impact. Additionally, residue quantification is made and its management protocols are developed for each practice. The project has several stages: diagnose, action implementation, student, teacher and administration personnel training and evaluation during the process and at the end of it. The article describes methodological aspects of the project operation emphasizing on reagent and residue quantification through flow diagrams.
Resumo:
Denitrification is a microbially-mediated process that converts nitrate (NO3-) to dinitrogen (N2) gas and has implications for soil fertility, climate change, and water quality. Using PCR, qPCR, and T-RFLP, the effects of environmental drivers and land management on the abundance and composition of functional genes were investigated. Environmental variables affecting gene abundance were soil type, soil depth, nitrogen concentrations, soil moisture, and pH, although each gene was unique in its spatial distribution and controlling factors. The inclusion of microbial variables, specifically genotype and gene abundance, improved denitrification models and highlights the benefit of including microbial data in modeling denitrification. Along with some evidence of niche selection, I show that nirS is a good predictor of denitrification enzyme activity (DEA) and N2O:N2 ratio, especially in alkaline and wetland soils. nirK was correlated to N2O production and became a stronger predictor of DEA in acidic soils, indicating that nirK and nirS are not ecologically redundant.
Resumo:
Four (4) wastewater quality variables: chemical oxygen demand (COD), total solid (TS), total dissolved solid (TDS), and total suspended solid (TSS) were determined. Analysed samples comprises of raw influent and effluents entering and leaving the stabilisation ponds. Significant reduction in variables were obtained, maximum and minimum values obtained for COD were 917mg/l (anaerobic pond), and 13mg/l (maturation pond). For TS, TDS and TSS, maximum and minimum values obtained were 14,420mg/l, 9,180mg/l, 5,240mg/l and 3,398mg/l, 3,120mg/l, 278mg/l respectively. Removal efficiencies recorded for parameters in final effluent (maturation pond) were 98.55% (COD), 76.44% (TS), 66.01% (TDS), and 94.69% (TSS) respectively.
Resumo:
In this paper agricultural waste; Canarium schweinfurthii was explored for the sequestering of Fe and Pb ions from wastewater solution after carbonization and chemical treatment at 400oC. Optimum time of 30 and 150 min with percentage removal of 95 and 98% at optimum pH of 2 and 6 was obtained for Fe and Pb ions. Kinetics model followed pseudofirst order as sum of absolute error (EABS) between Qe and Qc greater than that of pseudo second order. Parameters evaluated from isothermal equation (Freundlich and Langmuir) showed that KL and QO for Fe > Pb and R2 for Langmuir> Freundlich. The study reveals the suitability of the adsorbent for sequestering of Fe and Pb ions from industrial wastewater.
Resumo:
Companies worldwide are reviewing their working process to avoid waste, become aligned with environmental management standards and to fulfill specifications defined for national and international regulations. In this context, it is important that Brazilian Chemical companies have a specific stability guide for their products. The main purpose of this work is to present a stability guide for chemical products based on the existing guides of the Pharmaceutical and Cosmetics segments. Furthermore, this work proposes to offer an additional period of shelf life for chemical products, provided they meet certain prerequisites.
Resumo:
Total soil carbon and chemical attributes under different land uses in the Brazilian savanna. The Brazilian savanna region (Cerrado) is one of the largest cultivated areas of the world. The different land uses in the region can effectively change the quantities of soil organic matter and the cycling of nutrients. I-lie objective of this study was to evaluate the effect of different land use management systems on the relationship between soil organic carbon and the soil chemical attributes of a Red Latosol (Oxisol) under Cerrado in Rio Verde (Goias state). The treatments studied were native vegetation (cerrado), low-productivity pasture, conventional tillage with soybean, and no-tillage with soybean and maize. The smallest values for pH, available P, K, Ca and Mg were observed for the Cerradao treatment, even if the relatively high C levels increased the potential soil cation exchange capacity. The pasture, conventional tillage and no-tillage treatments showed higher K, Ca, Mg, available 13, and S concentrations in the soil. In the areas where soil tillage did not take place and lime and fertilizers were applied superficially, the stratification of the soil organic carbon provides the retention of the elements near to the surface, with significance correlations with the soil chemicals attributes.