964 resultados para cellular pathways


Relevância:

20.00% 20.00%

Publicador:

Resumo:


Background: Bronchoscopic bronchoalveolar lavage in children to investigate bronchia disorders such as asthtna has both ethical and procedural difficulties.


Objective: The aim of this study was to establish a standardized non-bronchoscopic method to perform bronchoalveolar lavage in children attending for elective surgery to obtain normal cellular data.


Methods: Bronchoalveolar lavage was performed on normal children (n= 55) by infusing saline (20 mL) through an 8 FG suction catheter passed after endotracheal intubation. Oxygen saturation, heart and respiratory rate were monitored during the bronchoalveolar lavage procedure. Cellular analysis and total protein estimation of the lavage fluid were performed. Epithelial lining fluid volume was calculated (n = 15) using the urea dilution method.


Results: The procedure was well tolerated by all children. Total cell count and differential cell count for children (macrophages 70.8 ± 2.3%, lymphocytes 3.8 ± 0.6%, neutrophils 5,7 ± 1.0%, eosinophils 0.14 ± 0.03%. epithelial cells 19.6 ± 2.1%, mast cells 0.21 ± 0.02%) were similar to those reported for adults. Age and sex comparisons revealed no differences between groups. The mean total protein recovered in the cell free supernatant was 49.72 ± 4.29 mg/L and epithelial lining fluid volume was 0.82 ± 0.11% of return lavageate.


Conclusion This method allows bronchoalveolar lavage to be performed safely and quickly on children attending for routine elective surgery. Using this method and taking the ‘window of opportunity’ of elective surgery, the presence or absence of airway inflammation could be studied in children with various patterns of asthma during relatively asymptomatic periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the classification of spatiotemporal pattern of one-dimensional cellular automata (CA) whereas the classification comprises CA rules including their initial conditions. We propose an exploratory analysis method based on the normalized compression distance (NCD) of spatiotemporal patterns which is used as dissimilarity measure for a hierarchical clustering. Our approach is different with respect to the following points. First, the classification of spatiotemporal pattern is comparative because the NCD evaluates explicitly the difference of compressibility among two objects, e.g., strings corresponding to spatiotemporal patterns. This is in contrast to all other measures applied so far in a similar context because they are essentially univariate. Second, Kolmogorov complexity, which underlies the NCD, was used in the classification of CA with respect to their spatiotemporal pattern. Third, our method is semiautomatic allowing us to investigate hundreds or thousands of CA rules or initial conditions simultaneously to gain insights into their organizational structure. Our numerical results are not only plausible confirming previous classification attempts but also shed light on the intricate influence of random initial conditions on the classification results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE
To investigate changes in gene expression during aging of the retina in the mouse.

METHODS
Total RNA was extracted from the neuroretina of young (3-month-old) and old (20-month-old) mice and processed for microarray analysis. Age-related, differentially expressed genes were assessed by the empiric Bayes shrinkagemoderated t-statistics method. Statistical significance was based on dual criteria of a ratio of change in gene expression >2 and a P < 0.01. Differential expression in 11 selected genes was further verified by real-time PCR. Functional pathways involved in retinal ageing were analyzed by an online software package (DAVID-2008) in differentially expressed gene lists. Age-related changes in differential expression in the identified retinal molecular pathways were further confirmed by immunohistochemical staining of retinal flat mounts and retinal cryosections.

RESULTS
With ageing of the retina, 298 genes were upregulated and 137 genes were downregulated. Functional annotation showed that genes linked to immune responses (Ir genes) and to tissue stress/injury responses (TS/I genes) were most likely to be modified by ageing. The Ir genes affected included those regulating leukocyte activation, chemotaxis, endocytosis, complement activation, phagocytosis, and myeloid cell differentiation, most of which were upregulated, with only a few downregulated. Increased microglial and complement activation in the aging retina was further confirmed by confocal microscopy of retinal tissues. The most strongly upregulated gene was the calcitonin receptor (Calcr; >40-fold in old versus young mice).

CONCLUSIONS
The results suggest that retinal ageing is accompanied by activation of gene sets, which are involved in local inflammatory responses. A modified form of low-grade chronic inflammation (para-inflammation) characterizes these aging changes and involves mainly the innate immune system. The marked upregulation of Calcr in ageing mice most likely reflects this chronic inflammatory/stress response, since calcitonin is a known systemic biomarker of inflammation/sepsis. © Association for Research in Vision and Ophthalmology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal–regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase–dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas.STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-B–binding site abrogated promoter induction in response to CoMTb. TNF-, IL-1ß, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-B, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is one of a series of articles reporting on the large-scale ‘Northern Ireland Care Pathways and Outcomes Study’ (McSherry et al, 2008). The study has been examining a population of young children (n=374) who were in care under five years of age in Northern Ireland, and initially followed them across a four-year period (2000-2004). It has mapped these young children’s care careers, and explored factors relating to five care pathways that these children progressed along, i.e. towards adoption; long-term non-relative foster care; long-term relative foster care; Residence Order; and return to birth parent/s. This paper will examine the children’s care pathway patterns from 2000 to 2004, and will identify the background factors that appear to have influenced their specific care pathway. These background factors relate to the age of child, length of time in care, the child’s health, the child’s behaviour and regional variation. The findings indicate that although the care pathway patterns were to some extent similar to England and Wales, there were differences apparent to the Northern Ireland context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We know considerably more about what makes cells and tissues resistant or sensitive to radiation than we did 20 years ago. Novel techniques in molecular biology have made a major contribution to our understanding at the level of signalling pathways. Before the “New Biology” era, radioresponsiveness was defined in terms of physiological parameters designated as the five Rs. These are: repair, repopulation, reassortment, reoxygenation and radiosensitivity. Of these, only the role of hypoxia proved to be a robust predictive and prognostic marker, but radiotherapy regimens were nonetheless modified in terms of dose per fraction, fraction size and overall time, in ways that persist in clinical practice today. The first molecular techniques were applied to radiobiology about two decades ago and soon revealed the existence of genes/proteins that respond to and influence the cellular outcome of irradiation. The subsequent development of screening techniques using microarray technology has since revealed that a very large number of genes fall into this category. We can now obtain an adequately robust molecular signature, predicting for a radioresponsive phenotype using gene expression and proteomic approaches. In parallel with these developments, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) can now detect specific biological molecules such as haemoglobin and glucose, so revealing a 3D map of tumour blood flow and metabolism. The key to personalised radiotherapy will be to extend this capability to the proteins of the molecular signature that determine radiosensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Glycogen synthase kinase-3 (GSK-8) is a serine/threonine protein kinase, the activity of which is inhibited by a variety of extracellular stimuli including insulin, growth factors, cell specification factors and cell adhesion. Consequently, inhibition of GSK-3 activity has been proposed to play a role in the regulation of numerous signalling pathways that elicit pleiotropic cellular responses. This report describes the identification and characterisation of potent and selective small molecule inhibitors of GSK-3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Erythropoietin (Epo), the major regulator of erythropoiesis, and its cognate receptor (EpoR) are also expressed in nonerythroid tissues, including tumors. Clinical studies have highlighted the potential adverse effects of erythropoiesis-stimulating agents when used to treat cancer-related anemia. We assessed the ability of EpoR to enhance tumor growth and invasiveness following Epo stimulation. A benign noninvasive rat mammary cell line, Rama 37, was used as a model system. Cell signaling and malignant cell behavior were compared between parental Rama 37 cells, which express few or no endogenous EpoRs, and a modified cell line stably transfected with human EpoR (Rama 37-28). The incubation of Rama 37-28 cells with pharmacologic levels of Epo led to the rapid and sustained increases in phosphorylation of signal transducers and activators of transcription 5, Akt, and extracellular signal-regulated kinase. The activation of these signaling pathways significantly increased invasion, migration, adhesion, and colony formation. The Epo-induced invasion capacity of Rama 37-28 cells was reduced by the small interfering RNA-mediated knockdown of EpoR mRNA levels and by inhibitors of the phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways with adhesion also reduced by Janus-activated kinase 2/signal transducers and activators of transcription 5 inhibition. These data show that Epo induces phenotypic changes in the behavior of breast cancer cell lines and establishes links between individual cell signaling pathways and the potential for cancer spread.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone acetylation is a fundamental mechanism in the regulation of local chromatin conformation and gene expression. Research has focused on the impact of altered epigenetic environments on the expression of specific genes and their pathways. However, changes in histone acetylation also have a global impact on the cell. In this study we used digital texture analysis to assess global chromatin patterns following treatment with trichostatin A (TSA) and have observed significant alterations in the condensation and distribution of higher-order chromatin, which were associated with altered gene expression profiles in both immortalised normal PNT1A prostate cell line and androgen-dependent prostate cancer cell line LNCaP. Furthermore, the extent of TSA-induced disruption was both cell cycle and cell line dependent. This was illustrated by the identification of sub-populations of prostate cancer cells expressing high levels of H3K9 acetylation in the G2/M phase of the cell cycle that were absent in normal cell populations. In addition, the analysis of enriched populations of G1 cells showed a global decondensation of chromatin exclusively in normal cells.