959 resultados para candida parapsilosis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study compared the effectiveness of Ricinus communis (RC) with Nystatin (NYS) and Miconazole (MIC) in the treatment of institutionalised elderly with denture stomatitis (DS). They (n = 30) were randomly distributed into three groups: MIC, NYS or RC. Clinical and mycological evaluations were performed prior to the use of the antifungal (baseline) and repeated after 15 and 30 days of treatment. The sample was clinically examined for oral mucosal conditions. Standard photographs were taken of the palate, and the oral candidiasis was classified (Newton's criteria). Mycological investigation was performed by swabbing the palatal mucosa, and Candida spp. were quantified by counting the number of colony-forming units (cfu mL-1). The clinical and mycological data were analysed, respectively by Wilcoxon and Student's t-test (α = 0·05). Significant improvement in the clinical appearance of DS in the MIC and RC groups was observed between the 1st and 3rd collections (MIC - P = 0·018; RC - P = 0·011) as well as between the 2nd and 3rd collections (MIC - P = 0·018; RC - P = 0·011). Neither groups showed a statistically significant reduction in cfu mL-1 at any time. Although none of the treatments decreased the cfu mL-1, it was concluded that Ricinus communis can improve the clinical condition of denture stomatitis in institutionalised elderly patients, showing similar results to Miconazole. © 2013 Blackwell Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human oral cavity is colonized by a wide range of microorganisms, often organized in biofilms. These biofilms are responsible for the pathogenesis of caries and most periodontal diseases. A possible alternative to reduce biofilms is the photodynamic inactivation (PDI). The success of the PDI depends on different factors. The time required by the PS to remain in contact with the target cells prior to illumination is determinant for the technique's efficacy. This study aimed to assess the interaction between the PS and the biofilm prior to the PDI. We used confocal microscopy and FLIM to evaluate the interaction between the PS and the biofilm's microorganism during the pre-irradiation time (PIT). The study of this dynamics can lead to the understanding of why only some PSs are effective and why is necessary a long PIT for some microorganisms. Our results showed that are differences for each PIT. These differences can be the determinate for the efficacy of the PDI. We observed that the microorganism needs time to concentrate and/or transport the PS within the biofilm. We presented preliminary results for biofilms of Candida albicans and Streptococcus mutans in the presence of Curcumin and compared it with the literature. We observed that the effectiveness of the PDI might be directly correlated to the position of the PS with the biofilm. Further analyses will be conducted in order to confirm the potential of FLIM to assess the PS dynamics within the biofilms. © 2013 SPIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are a promising solution to face the antibiotic-resistant problem because they display little or no resistance effects. Dimeric analogues of select AMPs have shown pharmacotechnical advantages, making these molecules promising candidates for the development of novel antibiotic agents. Here, we evaluate the effects of dimerization on the structure and biological activity of the AMP aurein 1.2 (AU). AU and the C- and N-terminal dimers, (AU)2K and E(AU)2, respectively, were synthesized by solid-phase peptide synthesis. Circular dichroism spectra indicated that E(AU)2 has a coiled coil structure in water while (AU)2K has an α-helix structure. In contrast, AU displayed typical spectra for disordered structures. In LPC micelles, all peptides acquired a high amount of α-helix structure. Hemolytic and vesicle permeabilization assays showed that AU has a concentration dependence activity, while this effect was less pronounced for dimeric versions, suggesting that dimerization may change the mechanism of action of AU. Notably, the antimicrobial activity against bacteria and yeast decreased with dimerization. However, dimeric peptides promoted the aggregation of C. albicans. The ability to aggregate yeast cells makes dimeric versions of AU attractive candidates to inhibit the adhesion of C. albicans to biological targets and medical devices, preventing disease caused by this fungus. © 2013 Springer-Verlag Wien.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propolis is a beehive product used in traditional medicine due to its biological properties. It shows a complex chemical composition including phenolics, such as cinnamic acid (Ci). The mechanisms of action of propolis have been the subject of research recently; however, the involvement of Ci on propolis activity was not investigated on immune cells. Ci effects were evaluated on human monocytes, assessing the expression of Toll-like receptors (TLRs), HLA-DR, and CD80. Cytokine production (TNF-α and IL-10) and the fungicidal activity of monocytes were evaluated as well. Data showed that Ci downregulated TLR-2, HLA-DR, and CD80 and upregulated TLR-4 expression by human monocytes. High concentrations of Ci inhibited both TNF-α and IL-10 production, whereas the same concentrations induced a higher fungicidal activity against Candida albicans. TNF-α and IL-10 production was decreased by blocking TLR-4, while the fungicidal activity of monocytes was not affected by blocking TLRs. These results suggest that Ci modulated antigen receptors, cytokine production, and the fungicidal activity of human monocytes depending on concentration, and TLR-4 may be involved in its mechanism of action. Ci seemed to be partially involved in propolis activities. © 2013 Bruno José Conti et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylose is the main sugar in hemicellulosic hydrolysates and its fermentation into ethanol by microorganisms is influenced by nutritional factors, such as nitrogen source, vitamins and other elements. Rice bran extract (RBE) is an inexpensive nitrogen source primarily consisting of high amount of protein. This study evaluates the potential of RBE as a nitrogen source for the hemicellulosic ethanol production from sugarcane bagasse dilute acid hydrolysate by novel yeast strains Scheffersomyces shehatae (syn. Candida shehatae) CG8-8BY and Spathaspora arborariae UFMG-HM19.1A, isolated from Brazilian forests. Two different media formulations were used for inoculum preparation and production medium, using yeast extract and RBE as nitrogen sources. S. shehatae CG8-8BY showed ethanol production of 17.0 g/l with the ethanol yield (0.33 g/g) and fermentation efficiency (64 %) from medium supplemented with RBE. On the other hand, S. arborariae presented 5.4 g/l of ethanol production with ethanol yield (0.14 g/g) and fermentation efficiency (21 %) in a fermentation medium supplemented with RBE. Appropriate media formulation is an important parameter to increase the productivity of bioconversion process and RBE proved to be an efficient and inexpensive nitrogen source to supplement sugarcane bagasse hemicellulosic hydrolysate for second generation ethanol production. © 2013 Society for Sugar Research & Promotion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effectiveness of glycolic propolis (PRO) and ginger (GIN) extracts, calcium hydroxide (CH), chlorhexidine (CLX) gel and their combinations as ICMs (ICMs) against Candida albicans, Enterococcus faecalis, Escherichia coli and endotoxins in root canals. Material and Methods: After 28 days of contamination with microorganisms, the canals were instrumented and then divided according to the ICM: CH+saline; CLX, CH+CLX, PRO, PRO+CH; GIN; GIN+CH; saline. The antimicrobial activity and quantification of endotoxins by the chromogenic test of Limulus amebocyte lysate were evaluated after contamination and instrumentation at 14 days of ICM application and 7 days after ICM removal. Results and Conclusion: After analysis of results and application ofthe Kruskal-Wallis and Dunn statistical tests at 5% significance level, it was concluded that all ICMs were able to eliminate the microorganisms in the root canals and reduce their amount of endotoxins; however, CH was more effective in neutralizing endotoxins and less effective against C. albicans and E. faecalis, requiring the use of medication combinations to obtain higher success.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a solvothermal method for this research we synthesized nanocrystalline titanium dioxide (nc-TiO2) anatase particles with a mean diameter of 5.4 nm and evaluated their potential antifungal effect against planktonic cells of Candida albicans without UV radiation. To complement experimental data, we analyzed structural and electronic properties of both the bulk and the (1 0 1) surface of anatase by first-principles calculations. Based on experimental and theoretical results, a reactive O2H- and OH- species formation mechanism was proposed to explain the key factor which facilitates the antifungal activity. © 2013 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Candida genus expresses virulence factors that, when combined with immunosuppression and other risk factors, can cause different manifestations of oral candidiasis. The treatment of mucosal infections caused by Candida and the elucidation of the disease process have proven challenging. Therefore, the study of experimentally induced oral candidiasis in rats and mice is useful to clarify the etiopathology of this condition, improve diagnosis, and search for new therapeutic options because the disease process in these animals is similar to that of human candidiasis lesions. Here, we describe and discuss new studies involving rat and mouse models of oral candidiasis with respect to methods for inducing experimental infection, methods for evaluating the development of experimental candidiasis, and new treatment strategies for oral candidiasis. © 2013 Landes Bioscience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to isolate, quantify, identify, and compare opportunistic microorganisms (Candida and Staphylococcus genera and Enterobacteriaceae/Pseudomonadaceae families) from prosthesis-fitting surfaces, the hard palate, and mouth rinses of individuals wearing removable maxillary prosthesis with (50) and without (50) lesions of denture stomatitis (DS). The strains were collected and identified using phenotypic, biochemical and molecular tests. The counts of microorganisms were significantly higher in the group of individuals with DS (P < 0.05). C. albicans was the most frequently isolated yeast species in both groups, following by C. tropicalis and C. glabrata. Six isolates were identified as C. dubliniensis. S. aureus and S. epidermidis were the most frequent Staphylococcus species in both groups. Klebsiella pneumoniae was the predominant species in both groups. The association between Candida spp. and bacteria isolated in this study with DS suggests that these microorganisms may play important roles in the establishment and persistence of this disease. © 2013 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This in vitro study evaluated the effect of photodynamic therapy (PDT) on the multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans. Standardized fungal and bacterial suspensions were cultivated appropriately for each species and inoculated in 96-well microtiter plates for mix-biofilm formation. After 48 h of incubation, the biofilms were submitted to PDT (P + L+) using Photodithazine® (PDZ) at 100, 150, 175, 200, or 250 mg/mL for 20 min and 37.5 J/cm2 of light-emitting diode (LED) (660 nm). Additional samples were treated only with PDZ (P + L-) or LED (P-L+), or neither (control, P-L-). Afterwards, the biofilms were evaluated by quantification of colonies (CFU/mL), metabolic activity (XTT reduction assay), total biomass (crystal violet staining), and confocal scanning laser microscopy (CSLM). Data were analyzed by one-way ANOVA and Tukey tests (p < 0.05). Compared with the control, PDT promoted a significant reduction in colonies viability of the three species evaluated with 175 and 200 mg/mL of PDZ. PDT also significantly reduced the metabolic activity of the biofilms compared with the control, despite the PDZ concentration. However, no significant difference was found in the total biomass of samples submitted or not to PDT. For all analysis, no significant difference was verified among P-L-, P + L-, and P-L+. CSLM showed a visual increase of dead cells after PDT. PDT-mediated PDZ was effective in reducing the cell viability of multispecies biofilm. © 2013 Springer-Verlag London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: With the emergence of strains resistant to conventional antibiotics, it is important to carry studies using alternative methods to control these microorganisms causing important infections, such as the use of products of plant origin that has demonstrated effective antimicrobial activity besides biocompatibility. Therefore, this study aimed to evaluate the antimicrobial activity of plant extracts of Equisetum arvense L., Glycyrrhiza glabra L., Punica granatum L. and Stryphnodendron barbatimam Mart. against Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Candida albicans, Candida tropicalis, and Candida glabrata, and to analyze the cytotoxicity of these extracts in cultured murine macrophages (RAW 264.7).Methods: Antimicrobial activity of plant extracts was evaluated by microdilution method based on Clinical and Laboratory Standards Institute (CLSI), M7-A6 and M27-A2 standards. The cytotoxicity of concentrations that eliminated the microorganisms was evaluated by MTT colorimetric method and by quantification of proinflammatory cytokines (IL-1β and TNF-α) using ELISA.Results: In determining the minimum microbicidal concentration, E. arvense L., P. granatum L., and S. barbatimam Mart. extracts at a concentration of 50 mg/mL and G. glabra L. extract at a concentration of 100 mg/mL, were effective against all microorganisms tested. Regarding cell viability, values were 48% for E. arvense L., 76% for P. granatum L, 86% for S. barbatimam Mart. and 79% for G. glabra L. at the same concentrations. About cytokine production after stimulation with the most effective concentrations of the extracts, there was a significant increase of IL-1β in macrophage cultures treated with S. barbatimam Mart. (3.98 pg/mL) and P. granatum L. (7.72 pg/mL) compared to control (2.20 pg/mL) and a significant decrease of TNF-α was observed in cultures treated with G. glabra L. (4.92 pg/mL), S. barbatimam Mart. (0.85 pg/mL), E. arvense L. (0.83 pg/mL), and P. granatum L. (0.00 pg/mL) when compared to control (41.96 pg/mL).Conclusions: All plant extracts were effective against the microorganisms tested. The G. glabra L. extract exhibited least cytotoxicity and the E. arvense L. extract was the most cytotoxic. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure hydroxyapatite (HA) and hydroxyapatite decorated with silver (HA@Ag) nanoparticles were synthesized and characterized. The antifungal effect of HA@Ag nanoparticles in a distilled water solution was evaluated against Candida albicans. The origin of the antifungal activity of the HA@Ag is also discussed. The results obtained showed that the HA nanorod morphology remained the same with Ag ions decorations on the HA structure which were deposited in the form of nanospheres. Interaction where occurred between the structure and its defect density variation in the interfacial HA@Ag and intrafacial HA region with the fungal medium resulted in antifungal activity. The reaction mechanisms involved oxygen and water adsorption which formed an active complex cluster. The decomposition and desorption of the final products as well as the electron/hole recombination process have an important role in fungicidal effects. © 2013 C. A. Zamperini et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saccharomyces and non-Saccharomyces yeast species from a winery located in Brazil were identified by ribosomal gene-sequencing analysis. A total of 130 yeast strains were isolated from grape surfaces and musts during alcoholic fermentation from Isabel, Bordeaux, and Cabernet Sauvignon varieties. Samples were submitted to PCR-RFLP analysis and genomic sequencing. Thirteen species were identified: Candida quercitrusa, Candida stellata, Cryptococcus flavescens, Cryptococcus laurentii, Hanseniaspora uvarum, Issatchenkia occidentalis, Issatchenkia orientalis, Issatchenkia terricola, Pichia kluyveri, Pichia guilliermondii, Pichia sp., Saccharomyces cerevisiae, and Sporidiobolus pararoseus. A sequential substitution of species during the different stages of fermentation, with a dominance of non-Saccharomyces yeasts at the beginning, and a successive replacement of species by S. cerevisiae strains at the final steps were observed. This is the first report about the yeast distribution present throughout the alcoholic fermentation in a Brazilian winery, providing supportive information for future studies on their contribution to wine quality. © 2013 Springer Science+Business Media New York.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of cross-contamination between dental offices and prosthetic laboratories is of utmost importance to maintain the health of patients and dental office staff. The purpose of this study was to evaluate disinfection protocols, considering antimicrobial effectiveness and damage to the structures of prostheses. Solutions of 1% sodium hypochlorite, 2% chlorhexidine digluconate, 50% vinegar and sodium perborate were evaluated. Specimens were contaminated in vitro with standardized suspensions of Candida albicans, Streptococcus mutans, Escherichia coli, Staphylococcus aureus and Bacillus subtilis spores. Disinfection by immersion for 10. min was performed. Final counts of microorganisms were obtained using the plating method. Results were statistically compared by Kruskal-Wallis ANOVA and Dunn's test. The surface roughness of 40 specimens was analyzed before and after 10 disinfection cycles, and results were compared statistically using Student's t test. The solution of 50% vinegar was as effective as 1% sodium hypochlorite and 2% chlorhexidine against C. albicans, E. coli and S. mutans. The sodium perborate solution showed the lowest antimicrobial effectiveness. Superficial roughness increased after cycles in 1% sodium hypochlorite (p=0.02). Solutions of 1% sodium hypochlorite, 2% chlorhexidine and 50% vinegar were effective for the disinfection of heat-polymerized acrylic specimens. Sodium hypochlorite increased the superficial roughness. © 2013 King Saud Bin Abdulaziz University for Health Sciences.