997 resultados para bonding agents
Resumo:
L'experiència de l'autor en la temàtica d'agents intel·ligents i la seva aplicació als robots que emulen el joc de futbol han donat el bagatge suficient per poder encetar i proposar la temàtica plantejada en aquesta tesi: com fer que un complicat robot pugui treure el màxim suc de l'autoconeixement de l'estructura de control inclosa al seu propi cos físic, i així poder cooperar millor amb d'altres agents per optimitzar el rendiment a l'hora de resoldre problemes de cooperació. Per resoldre aquesta qüestió es proposa incorporar la dinàmica del cos físic en les decisions cooperatives dels agents físics unificant els móns de l'automàtica, la robòtica i la intel·ligència artificial a través de la noció de capacitat: la capacitat vista com a entitat on els enginyers de control dipositen el seu coneixement, i a la vegada la capacitat vista com la utilitat on un agent hi diposita el seu autoconeixement del seu cos físic que ha obtingut per introspecció. En aquesta tesi es presenta l'arquitectura DPAA que s'organitza seguint una jerarquia vertical en tres nivells d'abstracció o mòduls control, supervisor i agent, els quals presenten una estructura interna homogènia que facilita les tasques de disseny de l'agent. Aquests mòduls disposen d'un conjunt específic de capacitats que els permeten avaluar com seran les accions que s'executaran en un futur. En concret, al mòdul de control (baix nivell d'abstracció) les capacitats consisteixen en paràmetres que descriuen el comportament dinàmic i estàtic que resulta d'executar un controlador determinat, és a dir, encapsulen el coneixement de l'enginyer de control. Així, a través dels mecanismes de comunicació entre mòduls aquest coneixement pot anar introduint-se als mecanismes de decisió dels mòduls superiors (supervisor i agent) de forma que quan els paràmetres dinàmics i estàtics indiquin que pot haver-hi problemes a baix nivell, els mòduls superiors es poden responsabilitzar d'inhibir o no l'execució d'algunes accions. Aquest procés top-down intern d'avaluació de la viabilitat d'executar una acció determinada s'anomena procés d'introspecció. Es presenten diversos exemples per tal d'il·lustrar com es pot dissenyar un agent físic amb dinàmica pròpia utilitzant l'arquitectura DPAA com a referent. En concret, es mostra tot el procés a seguir per dissenyar un sistema real format per dos robots en formació de comboi, i es mostra com es pot resoldre el problema de la col·lisió utilitzant les capacitats a partir de les especificacions de disseny de l'arquitectura DPAA. Al cinquè capítol s'hi exposa el procés d'anàlisi i disseny en un domini més complex: un grup de robots que emulen el joc del futbol. Els resultats que s'hi mostren fan referència a l'avaluació de la validesa de l'arquitectura per resoldre el problema de la passada de la pilota. S'hi mostren diversos resultats on es veu que és possible avaluar si una passada de pilota és viable o no. Encara que aquesta possibilitat ja ha estat demostrada en altres treballs, l'aportació d'aquesta tesi està en el fet que és possible avaluar la viabilitat a partir de l'encapsulament de la dinàmica en unes capacitats específiques, és a dir, és possible saber quines seran les característiques de la passada: el temps del xut, la precisió o inclòs la geometria del moviment del robot xutador. Els resultats mostren que la negociació de les condicions de la passada de la pilota és possible a partir de capacitats atòmiques, les quals inclouen informació sobre les característiques de la dinàmica dels controladors. La complexitat del domini proposat fa difícil comparar els resultats amb els altres treballs. Cal tenir present que els resultats mostrats s'han obtingut utilitzant un simulador fet a mida que incorpora les dinàmiques dels motors dels robots i de la pilota. En aquest sentit cal comentar que no existeixen treballs publicats sobre el problema de la passada en què es tingui en compte la dinàmica dels robots. El present treball permet assegurar que la inclusió de paràmetres dinàmics en el conjunt de les capacitats de l'agent físic permet obtenir un millor comportament col·lectiu dels robots, i que aquesta millora es deu al fet que en les etapes de decisió els agents utilitzen informació relativa a la viabilitat sobre les seves accions: aquesta viabilitat es pot calcular a partir del comportament dinàmic dels controladors. De fet, la definició de capacitats a partir de paràmetres dinàmics permet treballar fàcilment amb sistemes autònoms heterogenis: l'agent físic pot ser conscient de les seves capacitats d'actuació a través de mecanismes interns d'introspecció, i això permet que pugui prendre compromisos amb altres agents físics.
Resumo:
La gestió de xarxes és un camp molt ampli i inclou molts aspectes diferents. Aquesta tesi doctoral està centrada en la gestió dels recursos en les xarxes de banda ampla que disposin de mecanismes per fer reserves de recursos, com per exemple Asynchronous Transfer Mode (ATM) o Multi-Protocol Label Switching (MPLS). Es poden establir xarxes lògiques utilitzant els Virtual Paths (VP) d'ATM o els Label Switched Paths (LSP) de MPLS, als que anomenem genèricament camins lògics. Els usuaris de la xarxa utilitzen doncs aquests camins lògics, que poden tenir recursos assignats, per establir les seves comunicacions. A més, els camins lògics són molt flexibles i les seves característiques es poden canviar dinàmicament. Aquest treball, se centra, en particular, en la gestió dinàmica d'aquesta xarxa lògica per tal de maximitzar-ne el rendiment i adaptar-la a les connexions ofertes. En aquest escenari, hi ha diversos mecanismes que poden afectar i modificar les característiques dels camins lògics (ample de banda, ruta, etc.). Aquests mecanismes inclouen els de balanceig de la càrrega (reassignació d'ample de banda i reencaminament) i els de restauració de fallades (ús de camins lògics de backup). Aquests dos mecanismes poden modificar la xarxa lògica i gestionar els recursos (ample de banda) dels enllaços físics. Per tant, existeix la necessitat de coordinar aquests mecanismes per evitar possibles interferències. La gestió de recursos convencional que fa ús de la xarxa lògica, recalcula periòdicament (per exemple cada hora o cada dia) tota la xarxa lògica d'una forma centralitzada. Això introdueix el problema que els reajustaments de la xarxa lògica no es realitzen en el moment en què realment hi ha problemes. D'altra banda també introdueix la necessitat de mantenir una visió centralitzada de tota la xarxa. En aquesta tesi, es proposa una arquitectura distribuïda basada en un sistema multi agent. L'objectiu principal d'aquesta arquitectura és realitzar de forma conjunta i coordinada la gestió de recursos a nivell de xarxa lògica, integrant els mecanismes de reajustament d'ample de banda amb els mecanismes de restauració preplanejada, inclosa la gestió de l'ample de banda reservada per a la restauració. Es proposa que aquesta gestió es porti a terme d'una forma contínua, no periòdica, actuant quan es detecta el problema (quan un camí lògic està congestionat, o sigui, quan està rebutjant peticions de connexió dels usuaris perquè està saturat) i d'una forma completament distribuïda, o sigui, sense mantenir una visió global de la xarxa. Així doncs, l'arquitectura proposada realitza petits rearranjaments a la xarxa lògica adaptant-la d'una forma contínua a la demanda dels usuaris. L'arquitectura proposada també té en consideració altres objectius com l'escalabilitat, la modularitat, la robustesa, la flexibilitat i la simplicitat. El sistema multi agent proposat està estructurat en dues capes d'agents: els agents de monitorització (M) i els de rendiment (P). Aquests agents estan situats en els diferents nodes de la xarxa: hi ha un agent P i diversos agents M a cada node; aquests últims subordinats als P. Per tant l'arquitectura proposada es pot veure com una jerarquia d'agents. Cada agent és responsable de monitoritzar i controlar els recursos als que està assignat. S'han realitzat diferents experiments utilitzant un simulador distribuït a nivell de connexió proposat per nosaltres mateixos. Els resultats mostren que l'arquitectura proposada és capaç de realitzar les tasques assignades de detecció de la congestió, reassignació dinàmica d'ample de banda i reencaminament d'una forma coordinada amb els mecanismes de restauració preplanejada i gestió de l'ample de banda reservat per la restauració. L'arquitectura distribuïda ofereix una escalabilitat i robustesa acceptables gràcies a la seva flexibilitat i modularitat.
Resumo:
En esta tesis se propone el uso de agentes inteligentes en entornos de aprendizaje en línea con el fin de mejorar la asistencia y motivación del estudiante a través de contenidos personalizados que tienen en cuenta el estilo de aprendizaje del estudiante y su nivel de conocimiento. Los agentes propuestos se desempeñan como asistentes personales que ayudan al estudiante a llevar a cabo las actividades de aprendizaje midiendo su progreso y motivación. El entorno de agentes se construye a través de una arquitectura multiagente llamada MASPLANG diseñada para dar soporte adaptativo (presentación y navegación adaptativa) a un sistema hipermedia educativo desarrollado en la Universitat de Girona para impartir educación virtual a través del web. Un aspecto importante de esta propuesta es la habilidad de construir un modelo de estudiante híbrido que comienza con un modelo estereotípico del estudiante basado en estilos de aprendizaje y se modifica gradualmente a medida que el estudiante interactúa con el sistema (gustos subjetivos). Dentro del contexto de esta tesis, el aprendizaje se define como el proceso interno que, bajo factores de cambio resulta en la adquisición de la representación interna de un conocimiento o de una actitud. Este proceso interno no se puede medir directamente sino a través de demostraciones observables externas que constituyen el comportamiento relacionado con el objeto de conocimiento. Finalmente, este cambio es el resultado de la experiencia o entrenamiento y tiene una durabilidad que depende de factores como la motivación y el compromiso. El MASPLANG está compuesto por dos niveles de agentes: los intermediarios llamados IA (agentes de información) que están en el nivel inferior y los de Interfaz llamados PDA (agentes asistentes) que están en el nivel superior. Los agentes asistentes atienden a los estudiantes cuando trabajan con el material didáctico de un curso o una lección de aprendizaje. Esta asistencia consiste en la recolección y análisis de las acciones de los estudiantes para ofrecer contenidos personalizados y en la motivación del estudiante durante el aprendizaje mediante el ofrecimiento de contenidos de retroalimentación, ejercicios adaptados al nivel de conocimiento y mensajes, a través de interfaces de usuario animadas y atractivas. Los agentes de información se encargan del mantenimiento de los modelos pedagógico y del dominio y son los que están en completa interacción con las bases de datos del sistema (compendio de actividades del estudiante y modelo del dominio). El escenario de funcionamiento del MASPLANG está definido por el tipo de usuarios y el tipo de contenidos que ofrece. Como su entorno es un sistema hipermedia educativo, los usuarios se clasifican en profesores quienes definen y preparan los contenidos para el aprendizaje adaptativo, y los estudiantes quienes llevan a cabo las actividades de aprendizaje de forma personalizada. El perfil de aprendizaje inicial del estudiante se captura a través de la evaluación del cuestionario ILS (herramienta de diagnóstico del modelo FSLSM de estilos de aprendizaje adoptado para este estudio) que se asigna al estudiante en su primera interacción con el sistema. Este cuestionario consiste en un conjunto de preguntas de naturaleza sicológica cuyo objetivo es determinar los deseos, hábitos y reacciones del estudiante que orientarán la personalización de los contenidos y del entorno de aprendizaje. El modelo del estudiante se construye entonces teniendo en cuenta este perfil de aprendizaje y el nivel de conocimiento obtenido mediante el análisis de las acciones del estudiante en el entorno.
Resumo:
La principal contribución de esta Tesis es la propuesta de un modelo de agente BDI graduado (g-BDI) que permita especificar una arquitetura de agente capaz de representar y razonar con actitudes mentales graduadas. Consideramos que una arquitectura BDI más exible permitirá desarrollar agentes que alcancen mejor performance en entornos inciertos y dinámicos, al servicio de otros agentes (humanos o no) que puedan tener un conjunto de motivaciones graduadas. En el modelo g-BDI, las actitudes graduadas del agente tienen una representación explícita y adecuada. Los grados en las creencias representan la medida en que el agente cree que una fórmula es verdadera, en los deseos positivos o negativos permiten al agente establecer respectivamente, diferentes niveles de preferencias o de rechazo. Las graduaciones en las intenciones también dan una medida de preferencia pero en este caso, modelan el costo/beneficio que le trae al agente alcanzar una meta. Luego, a partir de la representación e interacción de estas actitudes graduadas, pueden ser modelados agentes que muestren diferentes tipos de comportamiento. La formalización del modelo g-BDI está basada en los sistemas multi-contextos. Diferentes lógicas modales multivaluadas se han propuesto para representar y razonar sobre las creencias, deseos e intenciones, presentando en cada caso una axiomática completa y consistente. Para tratar con la semántica operacional del modelo de agente, primero se definió un calculus para la ejecución de sistemas multi-contextos, denominado Multi-context calculus. Luego, mediante este calculus se le ha dado al modelo g-BDI semántica computacional. Por otra parte, se ha presentado una metodología para la ingeniería de agentes g-BDI en un escenario multiagente. El objeto de esta propuesta es guiar el diseño de sistemas multiagentes, a partir de un problema del mundo real. Por medio del desarrollo de un sistema recomendador en turismo como caso de estudio, donde el agente recomendador tiene una arquitectura g-BDI, se ha mostrado que este modelo es valioso para diseñar e implementar agentes concretos. Finalmente, usando este caso de estudio se ha realizado una experimentación sobre la flexibilidad y performance del modelo de agente g-BDI, demostrando que es útil para desarrollar agentes que manifiesten conductas diversas. También se ha mostrado que los resultados obtenidos con estos agentes recomendadores modelizados con actitudes graduadas, son mejores que aquellos alcanzados por los agentes con actitudes no-graduadas.
Resumo:
Would a research assistant - who can search for ideas related to those you are working on, network with others (but only share the things you have chosen to share), doesn’t need coffee and who might even, one day, appear to be conscious - help you get your work done? Would it help your students learn? There is a body of work showing that digital learning assistants can be a benefit to learners. It has been suggested that adaptive, caring, agents are more beneficial. Would a conscious agent be more caring, more adaptive, and better able to deal with changes in its learning partner’s life? Allow the system to try to dynamically model the user, so that it can make predictions about what is needed next, and how effective a particular intervention will be. Now, given that the system is essentially doing the same things as the user, why don’t we design the system so that it can try to model itself in the same way? This should mimic a primitive self-awareness. People develop their personalities, their identities, through interacting with others. It takes years for a human to develop a full sense of self. Nobody should expect a prototypical conscious computer system to be able to develop any faster than that. How can we provide a computer system with enough social contact to enable it to learn about itself and others? We can make it part of a network. Not just chatting with other computers about computer ‘stuff’, but involved in real human activity. Exposed to ‘raw meaning’ – the developing folksonomies coming out of the learning activities of humans, whether they are traditional students or lifelong learners (a term which should encompass everyone). Humans have complex psyches, comprised of multiple strands of identity which reflect as different roles in the communities of which they are part – so why not design our system the same way? With multiple internal modes of operation, each capable of being reflected onto the outside world in the form of roles – as a mentor, a research assistant, maybe even as a friend. But in order to be able to work with a human for long enough to be able to have a chance of developing the sort of rich behaviours we associate with people, the system needs to be able to function in a practical and helpful role. Unfortunately, it is unlikely to get a free ride from many people (other than its developer!) – so it needs to be able to perform a useful role, and do so securely, respecting the privacy of its partner. Can we create a system which learns to be more human whilst helping people learn?
Resumo:
An elastomeric, supramolecular healable polymer blend, comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl endgroups, is compatibilised by aromatic π−π stacking between the π-electron-deficient diimide groups and the π-electron-rich pyrenyl units. This inter-polymer interaction is key to forming a tough, healable, elastomeric material. Variable temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the π–π stacking interactions. Variable temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology, and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.
Resumo:
An isolate of Gliocladium virens from disease affected soil in a commercial tomato greenhouse proved highly antagonistic to Fusarium oxysporum f.sp. lycopersici, used together with an isolate of the nematophagus fungus Verticillium chlamydosporium. Significant disease control was obtained when young mycelial preparation (on a food-base culture) of the G. virens together with V. chlamydosporium was applied in potting medium. Similar results were observed when a Trichoderma harzianum isolate was treated in combination with the V. chlamydosporium isolate. Most promising, in terms of minimizing the Fusarium wilt of tomato incidence, was also the effect of the bacteria associated with entomopathogenic nematodes (Steinernema spp.), Pseudomonas oryzihabitans and Xenorhabdus nematophilus.