971 resultados para biochemical weapons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replication initiation protein Cdc6p forms a tight complex with Cdc28p, specifically with forms of the kinase that are competent to promote replication initiation. We now show that potential sites of Cdc28 phosphorylation in Cdc6p are required for the regulated destruction of Cdc6p that has been shown to occur during the Saccharomyces cerevisiae cell cycle. Analysis of Cdc6p phosphorylation site mutants and of the requirement for Cdc28p in an in vitro ubiquitination system suggests that targeting of Cdc6p for degradation is more complex than previously proposed. First, phosphorylation of N-terminal sites targets Cdc6p for polyubiquitination probably, as expected, through promoting interaction with Cdc4p, an F box protein involved in substrate recognition by the Skp1-Cdc53-F-box protein (SCF) ubiquitin ligase. However, in addition, mutation of a single, C-terminal site stabilizes Cdc6p in G2 phase cells without affecting substrate recognition by SCF in vitro, demonstrating a second and novel requirement for specific phosphorylation in degradation of Cdc6p. SCF-Cdc4p– and N-terminal phosphorylation site–dependent ubiquitination appears to be mediated preferentially by Clbp/Cdc28p complexes rather than by Clnp/Cdc28ps, suggesting a way in which phosphorylation of Cdc6p might control the timing of its degradation at then end of G1 phase of the cell cycle. The stable cdc6 mutants show no apparent replication defects in wild-type strains. However, stabilization through mutation of three N-terminal phosphorylation sites or of the single C-terminal phosphorylation site leads to dominant lethality when combined with certain mutations in the anaphase-promoting complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed a genetic and biochemical analysis of the SPO12 gene, which regulates meiotic nuclear divisions in budding yeast. When sporulated, spo12 mutants undergo a single meiotic nuclear division most closely resembling meiosis II. We observed that Spo12 protein is localized to the nucleus during both meiotic divisions and that Clb1-Cdc28, Clb3-Cdc28, Clb4-Cdc28, and Clb5-Cdc28 kinase activities during meiosis were not affected by a spo12 mutation. Using two-hybrid analysis, we identified several genes, three of which are meiotically induced, that may code for proteins that interact with Spo12p. We also observed that two genes, BNS1 (Bypasses Need for Spo12p), which has homology to SPO12, and SPO13, whose mutant phenotype is like that of spo12, can partially suppress the meiotic defect of spo12 mutants when overexpressed. We found that Spo12p is also localized to the nucleus in vegetative cells and that its level peaks during G2/M. We observed that a spo12 mutation is synthetically lethal in vegetative cells with a mutation in HCT1, a gene necessary for cells to exit mitosis, suggesting that Spo12p may have a role in exit from mitosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocular cicatricial pemphigoid (OCP) is an autoimmune disease that affects mainly conjunctiva and other squamous epithelia. OCP is histologically characterized by a separation of the epithelium from underlying tissues within the basement membrane zone. Immunopathological studies demonstrate the deposition of anti-basement membrane zone autoantibodies in vivo. Purified IgG from sera of patients with active OCP identified a cDNA clone from a human keratinocyte cDNA library that had complete homology with the cytoplasmic domain of β4-integrin. The sera recognized a 205-kDa protein in human epidermal, human conjunctiva, and tumor cell lysates that was identified as β4-integrin by its reaction with polyclonal and monoclonal antibodies to human β4-integrin. Sera from patients with bullous pemphigoid, pemphigus vulgaris, and cicatricial pemphigoid-like diseases did not recognize the 205-kDa protein, indicating the specificity of the binding. These data strongly implicate a role for human β4-integrin in the pathogenesis of OCP. It should be emphasized that multiple antigens in the basement membrane zone of squamous epithelia may serve as targets for a wide spectrum of autoantibodies observed in vesiculobullous diseases. Molecular definition of these autoantigens will facilitate the classification and characterization of subsets of cicatricial pemphigoid and help distinguishing them from bullous pemphigoid. This study highlights the function and importance of β4-integrin in maintaining the attachment of epithelial cells to the basement membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for cell–cell and cell–liposome fusion at the single-cell level is described. Individual cells or liposomes were first selected and manipulated either by optical trapping or by adhesion to a micromanipulator-controlled ultramicroelectrode. Spatially selective fusion of the cell–cell or cell–liposome pair was achieved by the application of a highly focused electric field through a pair of 5-μm o.d. carbon-fiber ultramicroelectrodes. The ability to fuse together single cells opens new possibilities in the manipulation of the genetic and cellular makeup of individual cells in a controlled manner. In the study of cellular networks, for example, the alteration of the biochemical identity of a selected cell can have a profound effect on the behavior of the entire network. Fusion of a single liposome with a target cell allows the introduction of the liposomal content into the cell interior as well as the addition of lipids and membrane proteins onto the cell surface. This cell–liposome fusion represents an approach to the manipulation of the cytoplasmic contents and surface properties of single cells. As an example, we have introduced a membrane protein (γ-glutamyltransferase) reconstituted in liposomes into the cell plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an efficient technique for the selective chemical and biological manipulation of the contents of individual cells. This technique is based on the electric-field-induced permeabilization (electroporation) in biological membranes using a low-voltage pulse generator and microelectrodes. A spatially highly focused electric field allows introduction of polar cell-impermeant solutes such as fluorescent dyes, fluorogenic reagents, and DNA into single cells. The high spatial resolution of the technique allows for design of, for example, cellular network constructions in which cells in close contact with each other can be made to possess different biochemical, biophysical, and morphological properties. Fluorescein, and fluo-3 (a calcium-sensitive fluorophore), are electroporated into the soma of cultured single progenitor cells derived from adult rat hippocampus. Fluo-3 also is introduced into individual submicrometer diameter processes of thapsigargin-treated progenitor cells, and a plasmid vector cDNA construct (pRAY 1), expressing the green fluorescent protein, is electroporated into cultured single COS 7 cells. At high electric field strengths, observations of dye-transfer into organelles are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4–0.6 μm wide, forming an orthogonal honeycomb network in a surface zone 50 μm thick, with 2–3 × 106 intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth’s surface by ∼3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial “soup.” Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many small bacterial, archaebacterial, and eukaryotic genomes have been sequenced, and the larger eukaryotic genomes are predicted to be completely sequenced within the next decade. In all genomes sequenced to date, a large portion of these organisms’ predicted protein coding regions encode polypeptides of unknown biochemical, biophysical, and/or cellular functions. Three-dimensional structures of these proteins may suggest biochemical or biophysical functions. Here we report the crystal structure of one such protein, MJ0577, from a hyperthermophile, Methanococcus jannaschii, at 1.7-Å resolution. The structure contains a bound ATP, suggesting MJ0577 is an ATPase or an ATP-mediated molecular switch, which we confirm by biochemical experiments. Furthermore, the structure reveals different ATP binding motifs that are shared among many homologous hypothetical proteins in this family. This result indicates that structure-based assignment of molecular function is a viable approach for the large-scale biochemical assignment of proteins and for discovering new motifs, a basic premise of structural genomics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytosolic 70-kDa heat shock proteins (Hsp70s), Ssa and Ssb, of Saccharomyces cerevisiae are functionally distinct. Here we report that the ATPase activities of these two classes of Hsp70s exhibit different kinetic properties. The Ssa ATPase has properties similar to those of other Hsp70s studied, such as DnaK and Hsc70. Ssb, however, has an unusually low steady-state affinity for ATP but a higher maximal velocity. In addition, the ATPase activity of Hsp70s, like that of Ssa1, depends on the addition of K+ whereas Ssb activity does not. Suprisingly, the isolated 44-kDa ATPase domain of Ssb has a Km and Vmax for ATP hydrolysis similar to those of Ssa, rather than those of full length Ssb. Analysis of Ssa/Ssb fusion proteins demonstrates that the Ssb peptide-binding domain fused to the Ssa ATPase domain generates an ATPase of relatively high activity and low steady-state affinity for ATP similar to that of native Ssb. Therefore, at least some of the biochemical differences between the ATPases of these two classes of Hsp70s are not intrinsic to the ATPase domain itself. The differential influence of the peptide-binding domain on the ATPase domain may, in part, explain the functional uniqueness of these two classes of Hsp70s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis is a highly regulated form of cell death, characterized by distinctive features such as cellular shrinkage and nuclear condensation. We demonstrate here that proteolytic activation of hPAK65, a p21-activated kinase, induces morphological changes and elicits apoptosis. hPAK65 is cleaved both in vitro and in vivo by caspases at a single site between the N-terminal regulatory p21-binding domain and the C-terminal kinase domain. The C-terminal cleavage product becomes activated, with a kinetic profile that parallels caspase activation during apoptosis. This C-terminal hPAK65 fragment also activates the c-Jun N-terminal kinase pathway in vivo. Microinjection or transfection of this truncated hPAK65 causes striking alterations in cellular and nuclear morphology, which subsequently promotes apoptosis in both CHO and Hela cells. Conversely, apoptosis is delayed in cells expressing a dominant-negative form of hPAK65. These findings provide a direct evidence that the activated form of hPAK65 generated by caspase cleavage is a proapoptotic effector that mediates morphological and biochemical changes seen in apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA encoding annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA was expressed in Escherichia coli, and the resultant recombinant protein was purified. We then investigated some biochemical properties of the recombinant annexin based on the current understanding of plant annexins. An “add-back experiment” was performed to study the effect of the recombinant annexin on β-glucan synthase activity, but no effect was found. However, it was found that the recombinant annexin could display ATPase/GTPase activities. The recombinant annexin showed much higher GTPase than ATPase activity. Mg2+ was essential for these activities, whereas a high concentration of Ca2+ was inhibitory. A photolabeling assay showed that this annexin could bind GTP more specifically than ATP. The GTP-binding site on the annexin was mapped into the carboxyl-terminal fourth repeat of annexin from the photolabeling experiment using domain-deletion mutants of this annexin. Northern-blot analysis showed that the annexin gene was highly expressed in the elongation stages of cotton fiber differentiation, suggesting a role of this annexin in cell elongation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) “plant-defense” response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of biochemical homochirality was a key step in the origin of life, yet prebiotic mechanisms for chiral separation are not well constrained. Here we demonstrate a geochemically plausible scenario for chiral separation of amino acids by adsorption on mineral surfaces. Crystals of the common rock-forming mineral calcite (CaCO3), when immersed in a racemic aspartic acid solution, display significant adsorption and chiral selectivity of d- and l-enantiomers on pairs of mirror-related crystal-growth surfaces. This selective adsorption is greater on crystals with terraced surface textures, which indicates that d- and l-aspartic acid concentrate along step-like linear growth features. Thus, selective adsorption of linear arrays of d- and l-amino acids on calcite, with subsequent condensation polymerization, represents a plausible geochemical mechanism for the production of homochiral polypeptides on the prebiotic Earth.