977 resultados para binding free enthalpy
Resumo:
The major heat-stable shrimp allergen (designated as Sa-II), capable of provoking IgE-mediated immediate type hypersensitivity reactions after the ingestion of cooked shrimp, has been shown to be a 34-kDa heat- stable protein containing 300 amino acid residues. Here, we report that a comparison of amino acid sequences of different peptides generated by proteolysis of Sa-II revealed an 86% homology with tropomyosin from Drosophila melanogaster, suggesting that Sa-II could be the shrimp muscle protein tropomyosin. To establish that Sa-II is indeed tropomyosin, the latter was isolated from uncooked shrimp (Penaeus indicus) and its physicochemical and immunochemical properties were compared with those of Sa-II. Both tropomyosin and Sa-II had the same molecular mass and focused in the isoelectric pH range of 4.8 to 5.4. In the presence of 6 M urea, the mobility of both Sa-II and shrimp tropomyosin shifted to give an apparent molecular mass of 50 kDa, which is a characteristic property of tropomyosins. Shrimp tropomyosin bound to specific IgE antibodies in the sera of shrimp-sensitive patients as assessed by competitive ELISA inhibition and Western blot analysis. Tryptic maps of both Sa-II and tropomyosin as obtained by reverse phase HPLC were superimposable. Dot-blot and competitive ELISA inhibition using sera of shrimp-sensitive patients revealed that antigenic as well as allergenic activities were associated with two peptide fractions. These IgE-binding tryptic peptides were purified and sequenced. Mouse anti-anti-idiotypic antibodies raised against Sa-II specific human idiotypic antibodies recognized not only tropomyosin but also the two allergenic peptides, thus suggesting that these peptides represent the major IgE binding epitopes of tropomyosin. A comparison of the amino acid sequence of shrimp tropomyosin in the region of IgE binding epitopes (residues 50-66 and 153-161) with the corresponding regions of tropomyosins from different vertebrates confirmed lack of allergenic cross-reactivity between tropomyosins from phylogenetically distinct species.
Resumo:
Expression of genes involved in methanol metabolism of Pichia pastoris is regulated by Mxr1p, a zinc finger transcription factor. In this study, we studied the target gene specificity of Mxr1p by examining its ability to bind to promoters of genes encoding dihydroxyacetone synthase (DHAS) and peroxin 8 (PEX8), since methanol-inducible expression of these genes is abrogated in mxr1-null mutant strains of P. pastoris. Different regions of DHAS and PEX8 promoter were isolated from P. pastoris genomic DNA and their ability to bind to a recombinant Mxr1p protein containing the N-terminal 150 amino acids, including the zinc finger DNA-binding domain, was examined. These studies reveal that Mxr1p specifically binds to promoter regions containing multiple 5'-CYCC-3' sequences, although all DNA sequences containing the 5'-CYCC-3' motif do not qualify as Mxr1p-binding sites. Key DNA-binding determinants are present outside 5'-CYCC-3' motif and Mxr1p preferably binds to DNA sequences containing 5'-CYCCNY-3' than those containing 5'-CYCCNR-3' sequences. This study provides new insights into the molecular determinants of target gene specificity of Mxr1p, and the methodology described here can be used for mapping Mxr1p-binding sites in other methanol-inducible promoters of P. pastoris. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The nonaxisymmetric unsteady motion produced by a buoyancy-induced cross-flow of an electrically conducting fluid over an infinite rotating disk in a vertical plane and in the presence of an applied magnetic field normal to the disk has been studied. Both constant wall and constant heat flux conditions have been considered. It has been found that if the angular velocity of the disk and the applied magnetic field squared vary inversely as a linear function of time (i.e. as (1??t*)?1, the governing Navier-Stokes equation and the energy equation admit a locally self-similar solution. The resulting set of ordinary differential equations has been solved using a shooting method with a generalized Newton's correction procedure for guessed boundary conditions. It is observed that in a certain region near the disk the buoyancy induced cross-flow dominates the primary von Karman flow. The shear stresses induced by the cross-flow are found to be more than these of the primary flow and they increase with magnetic parameter or the parameter ? characterizing the unsteadiness. The velocity profiles in the x- and y-directions for the primary flow at any two values of the unsteady parameter ? cross each other towards the edge of the boundary layer. The heat transfer increases with the Prandtl number but reduces with the magnetic parameter.
Resumo:
The nucleotide sequence of cosmid B1790, carrying the Rif-Str regions of the Mycobacterium leprae chromosome, has been determined. Twelve open reading frames were identified in the 36716bp sequence, representing 40% of the coding capacity. Five ribosomal proteins, two elongation factors and the β and β'subunits of RNA polymerase have been characterized and two novel genes were found. One of these encodes a member of the so-called ABC family of ATP-binding proteins while the other appears to encode an enzyme involved in repairing genomic lesions caused by free radicals. This finding may well be significant as M. leprae, an intracellular pathogen, lives within macrophages.
Resumo:
The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations. (C) 2011 American Institute of Physics. doi:10.1063/1.3516588]
Resumo:
A finite element method (FEM)-based study has been carried out for the design of flat microtensile samples to evaluate tensile properties of Pt-aluminide (PtAl) bond coats. The critical dimensions of the sample have been determined using a two-dimensional elastic stress analysis. In the present testing scheme, the ratio of the dimensions of the holding length to the fillet radius of the sample was found important to achieve failure within the gage length. The effect of gage length and grip head length also has been examined. The simulation predictions have been experimentally verified by conducting microtensile test of an actual PtAl bond coat at room temperature. The sample design and testing scheme suggested in this study have also been found suitable for evaluation of tensile properties at high temperature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A cross-linked polymer-gel soft matter electrolyte with superior electrochemical, thermal and mechanical properties obtained from free radical polymerization of vinyl monomers in a semi-solid organic nonionic plastic crystalline electrolyte for application in rechargeable lithium-ion batteries is discussed here.
Resumo:
One of the fundamental questions concerning homologous recombination is how RecA or its homologues recognize several DNA sequences with high affinity and catalyze all the diverse biological activities. In this study, we show that the extent of single-stranded DNA binding and strand exchange (SE) promoted by mycobacterial RecA proteins with DNA substrates having various degrees of GC content was comparable with that observed for Escherichia coli RecA. However, the rate and extent of SE promoted by these recombinases showed a strong negative correlation with increasing amounts of sequence divergence embedded at random across the length of the donor strand. Conversely, a positive correlation was seen between SE efficiency and the degree of sequence divergence in the recipient duplex DNA. The extent of heteroduplex formation was not significantly affected when both the pairing partners contained various degrees of sequence divergence, although there was a moderate decrease in the case of mycobacterial RecA proteins with substrates containing larger amounts of sequence divergence. Whereas a high GC content had no discernible effect on E. coli RecA coprotease activity, a negative correlation was apparent between mycobacterial RecA proteins and GC content. We further show clear differences in the extent of SE promoted by E. coli and mycobacterial RecA proteins in the presence of a wide range of ATP:ADP ratios. Taken together, our findings disclose the existence of functional diversity among E. coli and mycobacterial RecA nucleoprotein filaments, and the milieu of sequence divergence (i.e., in the donor or recipient) exerts differential effects on heteroduplex formation, which has implications for the emergence of new genetic variants.
Resumo:
Numerical solutions are presented for the free convection boundary layers over cylinders of elliptic cross section embedded in a fluid-saturated porous medium. The transformed conservation equations of the nonsimilar boundary layers are solved numerically by an efficient finite-difference method. The theory was applied to a number of cylinders and the results compared very well with published analytical solutions. The results are of use in the design of underground electrical cables, power plant steam, and water distribution lines, among others.
Resumo:
An improved flux draining technique for the extraction of grown YBCO crystals from its solvent is reported. This simple and efficient technique facilitates in-situ flux separation in the isothermal region of the furnace. Consequently, the crystals are spared from thermal shock and subsequent damage. Flux-free surfaces of these crystals were studied by optical microscopy. Transmission X-ray topographs of the crystals reveal the dislocations present in them as well as the stresses developed as a result of ferroelastic phase transition occurring during cooling.
Resumo:
The low-T-c layered superconductor 2H-NbSe2 shows remarkable results for free flux-flow Hall effect. At low magnetic fields, the Nozieres-Vinen result of a field-independent Hall angle appears to hold. At larger fields, a marked departure occurs leading to an extremely sharp and pronounced minimum slightly below H-c2, unaccounted for in the standard theoretical models. The results suggest the existence of collective dynamics and phase transitions (such as melting) in a clean flux line lattice.
Resumo:
Enoyl acyl carrier protein reductase (ENR), which catalyzes the final and rate limiting step of fatty acid elongation, has been validated as a potential drug target. Triclosan is known to be an effective inhibitor for this enzyme. We mutated the substrate binding site residue Ala372 of the ENR of Plasmodium falciparum (PfENR) to Methionine and Valine which increased the affinity of the enzyme towards triclosan to almost double, close to that of Escherichia coli ENR (EcENR) which has a Methionine at the structurally similar position of Ala372 of PfENR. Kinetic studies of the mutants of PfENR and the crystal structure analysis of the A372M mutant revealed that a more hydrophobic environment enhances the affinity of the enzyme for the inhibitor. A triclosan derivative showed a threefold increase in the affinity towards the mutants compared to the wild type, due to additional interactions with the A372M mutant as revealed by the crystal structure. The enzyme has a conserved salt bridge which stabilizes the substrate binding loop and appears to be important for the active conformation of the enzyme. We generated a second set of mutants to check this hypothesis. These mutants showed loss of function, except in one case, where the crystal structure showed that the substrate binding loop is stabilized by a water bridge network. (C) 2011 IUBMB mum Life, 63(1): 30-41,2011
Resumo:
Molecular constraints for the localization of active site directed ligands (competitive inhibitors and substrates) in the active site of phospholipase A2 (PLA2) are characterized. Structure activity relationships with known inhibitors suggest that the head : group interactions dominate the selectivity as well as a substantial part of the affinity. The ab initio fitting of the amide ligands in the active site was carried out to characterize the head group interactions. Based on a systematic coordinate space search, formamide is docked with known experimental constraints such as coordination of the carbonyl group to Ca2+ and hydrogen bond between amide nitrogen and ND1 of His48. An optimal position for a bound water molecule is identified and its significance for the catalytic mechanism is postulated. Unlike the traditional ''pseudo-triad'' mechanism, the ''Ca-coordinatedoxyanion'' mechanism proposed here invokes activation of the catalytic water to form the oxyanion in the coordination sphere of calcium. As it attacks the carbonyl carbon of the ester, a near-tetrahedral intermediate is formed. As the second proton of the catalytic water is abstracted by the ester oxygen, its reorientation and simultaneous cleavage form hydrogen bond with ND1 of His48. In this mechanism of esterolysis, a catalytic role for the water co-ordinated to Ca2+ is recognised.
Resumo:
In the past two decades RNase A has been the focus of diverse investigations in order to understand the nature of substrate binding and to know the mechanism of enzyme action. Although this system is reasonably well characterized from the view point of some of the binding sites, the details of interactions in the second base binding (B2) site is insufficient. Further, the nature of ligand-protein interaction is elucidated generally by studies on RNase A-substrate analog complexes (mainly with the help of X-ray crystallography). Hence, the details of interactions at atomic level arising due to substrates are inferred indirectly. In the present paper, the dinucleotide substrate UpA is fitted into the active site of RNase A Several possible substrate conformations are investigated and the binding modes have been selected based on Contact Criteria. Thus identified RNase A-UpA complexes are energy minimized in coordinate space and are analysed in terms of conformations, energetics and interactions. The best possible ligand conformations for binding to RNase A are identified by experimentally known interactions and by the energetics. Upon binding of UpA to RNase A the changes associated,with protein back bone, Side chains in general and at the binding sites in particular are described. Further, the detailed interactions between UpA and RNase A are characterized in terms of hydrogen bonds and energetics. An extensive study has helped in interpreting the diverse results obtained from a number of experiments and also in evaluating the extent of changes the protein and the substrate undergo in order to maximize their interactions.
Resumo:
Palladium substituted in cerium dioxide in the form of a solid solution, Ce-0.98 Pd-0.02 O-1.98 is a new heterogeneous catalyst which exhibits high activity and 100% trans-selectivity for the Heck reactions of aryl bromides including heteroaryls with olefins. The catalytic reactions work without any ligand. Nano-crystalline Ce-0.98 Pd-0.02 O-1.98 is prepared by solution combustion method and Pd is in +2 state. The catalyst can be separated, recovered and reused without significant loss in activity.