942 resultados para bacterial invasion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial cellulose is a highly hydrated pellicle made up of a random assembly of ribbon shaped fibers less than 5 nm wide. The unique properties provided by the nanometric structure have led to a number of diagnostic biological probes, display devices due to their unique size-dependent medical applications. Bacterial cellulose matrix extracellular is a novel biotechnology and unique medicine indicated for ultimate chronic wound treatment management, drug delivery, tissue engineering, skin cancer and offers an actual and effective solution to a serious medical and social problem and to promote rapid healing in lesions caused by Diabetic burns, ulcers of the lower limbs or any other circumstance in which there's epidermal or dermal loss. In this work, it is reported novel antimicrobial peptides (AMPs) bacterial cellulose/polyhexanide biguanide (PHMB) which are produced by symbioses culture between polyhexanide biguanide and green tea culture medium resulting in the pure 3-D structure consisting of an ultra-fine network of novel biocellulose/PHMB nanofibres matrix (2-8 nm), highly hydrated (99% in weight), and with higher molecular weight, full biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of applied scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of hyaluronic acid and gelatin (1% w/w) to the culture medium before the bacteria is inoculated. Hyaluronic acid and gelatin influence in bacterial cellulose was analyzed using Transmission Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adhesion and viability studies with human dental pulp stem cells using natural bacterial cellulose/hyaluronic acid as scaffolds for regenerative medicine are presented for the first time in this work. MTT viability assays show higher cell adhesion in bacterial cellulose/gelatin and bacterial cellulose/ hyaluronic acid scaffolds over time with differences due to fiber agglomeration in bacterial cellulose/gelatin. Confocal microscopy images showed that the cell were adhered and well distributed within the fibers in both types of scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Most clinical cases of osteomyelitis in dogs involve infectious agents, especially bacteria and fungi. The characterization of these microorganisms may aid in the prevention and treatment of disease.Objective: The aim of this study was to evaluate retrospectively microbiological cultures and in vitro antimicrobial susceptibility profile of isolates from 52 cases of bacterial osteomyelitis in long bones of dogs over 2000-2013. In 78% of the cases injuries were caused by a motor vehicle accident, but there were a few cases of dog bites (17%) and ascending infection due to pododermatitis (5%).Animals and methods: The isolated microorganisms were identified based on conventional phenotypic methods. In vitro disk diffusion test was performed using 30 different antimicrobials.Results: The isolates were obtained from femur (28%), humerus (16%), tibia (31%), and radius/ulna (25%). Among 52 cases, culture was positive in 88% of cases. Thirteen genus of different species of microorganisms were isolated. The most common microorganisms isolated were Staphylococcus spp. and Escherichia coli followed by Streptococcus spp., enteric bacteria, Corynebacterium sp. and anaerobic bacteria. In 42% of cases cultures were mixed. The most effective drugs against isolated bacteria were amoxicillin and clavulanate potassium (79%) followed by ceftriaxone (69%). High-resistance rates were documented against azithromycin (80%), penicillin (59%), and clindamycin (59%).Conclusions: The present study highlights diverse etiologic agents in cases of infectious bacterial osteomyelitis, with predominance of Staphylococcus genus, and reinforces the importance of obtaining cultures and susceptibility profiles given the high rates of antimicrobial resistance.