935 resultados para asymmetrical pumping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Several studies suggested an association between Helicobacter pylori infection and colorectal carcinoma or adenoma risk. However, different authors reported quite varying estimates. We carried out a systematic review and meta-analysis of published studies investigating this association and paid special attention to the possibility of publication bias and sources of heterogeneity between studies. Materials and METHODS: An extensive literature search and cross-referencing were performed to identify all published studies. Summary estimates were obtained using random-effects models. The presence of possible publication bias was assessed using different statistical approaches. RESULTS: In a meta-analysis of the 11 identified human studies, published between 1991 and 2002, a summary odds ratio of 1.4 (95% CI, 1.1-1.8) was estimated for the association between H. pylori infection and colorectal cancer risk. The graphical funnel plot appeared asymmetrical, but the formal statistical evaluations did not provide strong evidence of publication bias. The proportion of variation of study results because of heterogeneity was small (36.5%). CONCLUSIONS: The results of our meta-analysis are consistent with a possible small increase in risk of colorectal cancer because of H. pylori infection. However, the possibility of some publication bias cannot be ruled out, although it could not be statistically confirmed. Larger, better designed and better controlled studies are needed to clarify the situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our dynamic capillary electrophoresis model which uses material specific input data for estimation of electroosmosis was applied to investigate fundamental aspects of isoelectric focusing (IEF) in capillaries or microchannels made from bare fused-silica (FS), FS coated with a sulfonated polymer, polymethylmethacrylate (PMMA) and poly(dimethylsiloxane) (PDMS). Input data were generated via determination of the electroosmotic flow (EOF) using buffers with varying pH and ionic strength. Two models are distinguished, one that neglects changes of ionic strength and one that includes the dependence between electroosmotic mobility and ionic strength. For each configuration, the models provide insight into the magnitude and dynamics of electroosmosis. The contribution of each electrophoretic zone to the net EOF is thereby visualized and the amount of EOF required for the detection of the zone structures at a particular location along the capillary, including at its end for MS detection, is predicted. For bare FS, PDMS and PMMA, simulations reveal that EOF is decreasing with time and that the entire IEF process is characterized by the asymptotic formation of a stationary steady-state zone configuration in which electrophoretic transport and electroosmotic zone displacement are opposite and of equal magnitude. The location of immobilization of the boundary between anolyte and most acidic carrier ampholyte is dependent on EOF, i.e. capillary material and anolyte. Overall time intervals for reaching this state in microchannels produced by PDMS and PMMA are predicted to be similar and about twice as long compared to uncoated FS. Additional mobilization for the detection of the entire pH gradient at the capillary end is required. Using concomitant electrophoretic mobilization with an acid as coanion in the catholyte is shown to provide sufficient additional cathodic transport for that purpose. FS capillaries dynamically double coated with polybrene and poly(vinylsulfonate) are predicted to provide sufficient electroosmotic pumping for detection of the entire IEF gradient at the cathodic column end.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila arginine methyl-transferase 4 (DART4) belongs to the type I class of arginine methyltransferases. It catalyzes the methylation of arginine residues to monomethylarginines and asymmetrical dimethylarginines. The DART4 sequence is highly similar to mammalian PRMT4/CARM1, and DART4 substrate specificity has been conserved, too. Recently it was suggested that DART4/Carmer functions in ecdysone receptor mediated apoptosis of the polytene larval salivary glands and an apparent up-regulation of DART4/Carmer mRNA levels before tissue histolysis was reported. Here we show that in Drosophila larvae, DART4 is mainly expressed in the imaginal disks and in larval brains, and to a much lesser degree in the polytene larval tissue such as salivary glands. In glands, DART4 protein is present in the cytoplasm and the nucleus. The nuclear signal emanates from the extrachromosomal domain and gets progressively restricted to the region of the nuclear lamina upon pupariation. Surprisingly, DART4 levels do not increase in salivary glands during pupariation, and overexpression of DART4 does not cause precautious cell death in the glands. Furthermore, over- and misexpression of DART4 under the control of the alpha tubulin promoter do not lead to any major problem in the life of a fly. This suggests that DART4 activity is regulated at the posttranslational level and/or that it acts as a true cofactor in vivo. We present evidence that nuclear localization of DART4 may contribute to its function because DART4 accumulation changes from a distribution with a strong cytoplasmic component during the transcriptional quiescence of the young embryo to a predominantly nuclear one at the onset of zygotic transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A push to reduce dependency on foreign energy and increase the use of renewable energy has many gas stations pumping ethanol blended fuels. Recreational engines typically have less complex fuel management systems than that of the automotive sector. This prevents the engine from being able to adapt to different ethanol concentrations. Using ethanol blended fuels in recreational engines raises several consumer concerns. Engine performance and emissions are both affected by ethanol blended fuels. This research focused on assessing the impact of E22 on two-stroke and four-stroke snowmobiles. Three snowmobiles were used for this study. A 2009 Arctic Cat Z1 Turbo with a closed-loop fuel injection system, a 2009 Yamaha Apex with an open-loop fuel injection system and a 2010 Polaris Rush with an open-loop fuel injection system were used to determine the impact of E22 on snowmobile engines. A five mode emissions test was conducted on each of the snowmobiles with E0 and E22 to determine the impact of the E22 fuel. All of the snowmobiles were left in stock form to assess the effect of E22 on snowmobiles currently on the trail. Brake specific emissions of the snowmobiles running on E22 were compared to that of the E0 fuel. Engine parameters such as exhaust gas temperature, fuel flow, and relative air to fuel ratio (λ) were also compared on all three snowmobiles. Combustion data using an AVL combustion analysis system was taken on the Polaris Rush. This was done to compare in-cylinder pressures, combustion duration, and location of 50% mass fraction burn. E22 decreased total hydrocarbons and carbon monoxide for all of the snowmobiles and increased carbon dioxide. Peak power increased for the closed-loop fuel injected Arctic Cat. A smaller increase of peak power was observed for the Polaris due to a partial ability of the fuel management system to adapt to ethanol. A decrease in peak power was observed for the open-loop fuel injected Yamaha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of alternative propellants for Hall thruster operation is an active area of research. Xenon is the current propellant of choice for Hall thrusters, but can be costly in large thrusters and for extended test periods. Condensible propellants may offer an alternative to xenon, as they will not require costly active pumping to remove from a test facility, and may be less expensive to purchase. A method has been developed which uses segmented electrodes in the discharge channel of a Hall thruster to divert discharge current to and from the main anode and thus control the anode temperature. By placing a propellant reservoir in the anode, the evaporation rate, and hence, mass flow of propellant can be controlled. Segmented electrodes for thermal control of a Hall thruster represent a unique strategy of thruster design, and thus the performance of the thruster must be measured to determine the effect the electrodes have on the thruster. Furthermore, the source of any changes in thruster performance due to the adjustment of discharge current between the shims and the main anode must be characterized. A Hall thruster was designed and constructed with segmented electrodes. It was then tested at anode voltages between 300 and 400 V and mass flows between 4 and 6 mg/s, as well as 100%, 75%, 50%, 25%, and <5% of the discharge current on the shim electrodes. The level of current on the shims was adjusted by changing the shim voltage. At each operating point, the thruster performance, plume divergence, ion energy, and multiply charged ion fraction were measured performance exhibited a small change with the level of discharge current on the shim electrodes. Thrust and specific impulse increased by as much as 6% and 7.7%, respectively, as discharge current was shifted from the main anode to the shims at constant anode voltage. Thruster efficiency did not change. Plume divergence was reduced by approximately 4 degrees of half-angle at high levels of current on the shims and at all combinations of mass flow and anode voltage. The fraction of singly charged xenon in the thruster plume varied between approximately 80% and 95% as the anode voltage and mass flow were changed, but did not show a significant change with shim current. Doubly and triply charged xenon made up the remainder of the ions detected. Ion energy exhibited a mixed behavior. The highest voltage present in the thruster largely dictated the most probable energy; either shim or anode voltage, depending on which was higher. The overall change in most probable ion energy was 20-30 eV, the majority of which took place while the shim voltage was higher than the anode voltage. The thrust, specific impulse, plume divergence, and ion energy all indicate that the thruster is capable of a higher performance output at high levels of discharge current on the shims. The lack of a change in efficiency and fraction of multiply charged ions indicate that the thruster can be operated at any level of current on the shims without detrimental effect, and thus a condensible propellant thruster can control the anode temperature without a decrease in efficiency or a change in the multiply charged ion fraction.