992 resultados para areal geology
Resumo:
The As Pontes basin (12 km2), NW Iberian Peninsula, is bounded by a double restraining bend of a dextral strike-slip fault, which is related to the western onshore end of the Pyrenean belt. Surface and subsurface data obtained from intensive coal exploration and mining in the basin since the 1960s together with additional structural and stratigraphic sequence analysis allowed us to determine the geometric relationships between tectonic structures and stratigraphic markers. The small size of the basin and the large amount of quality data make the As Pontes basin a unique natural laboratory for improving our understanding of the origin and evolution of restraining bends. The double restraining bend is the end stage of the structural evolution of a compressive underlapping stepover, where the basin was formed. During the first stage (stepover stage), which began ca. 30 Ma ago (latest Rupelian) and lasted 3.4 My, two small isolated basins bounded by thrusts and normal faults were formed. For 1.3 My, the strike-slip faults, which defined the stepover, grew towards each other until joining and forming the double restraining bend, which bounds one large As Pontes basin (transition stage). The history of the basin was controlled by the activity of the double restraining bend for a further 3.4 My (restraining bend stage) and ended in mid-Aquitanian times (ca. 22 Ma).
Resumo:
Es proposen uns milloraments en la metodologia classica de determinació qualitativa dels minerals de la fraccio argila en sediments i sbls sorrencs. L'extraccioconstade: garbellament de la mostra amb un garbelladorde2 mmde pas; eliminacio de la materia organica amb aigua oxigenada; centnfugacio a 6.000 r. p. m.; garbellament en humit per 0,2 mm, agitamenc dispersio amb calgon; decantacio i sifonat; centrifugació i desecacio. Nova dispersio per a la preparacio d'agregats onentats i sedimentacio sobre els «portes» dins de plaques de Petri. Aixi queden a punt d'obtenir els diagrames roentgen. Per I'espectroscbpia de raigs infrarojos, es dispersen les mostres i, a més de les mostres «normals», es tracten amb malaquita o bencidina. Diferents exemples il.lustren el treball.
Resumo:
The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.
Resumo:
La evolución sedimentaria del Muschelkalk inferior de las cadenas costero catalanas se caracteriza por una primera secuencia de profundización, seguida por una segunda secuencia de somerización, constituída por pequeños ciclos somerizantes. Las dos secuencias están separadas por una discontinuidad estratigráfica de carácter regional. El tramo superior de la primera secuencia está dolomitizado por procesos de dolomitización secundaria él partir de la discontinuidad estratigráfica regional; en otros dominios de los Catalánides. la dolomitización puede afectar a casi toda la secuencia. La segunda secuencia está constituída por dolomías de tipo primario. El Muschelkalk inferior del dominio Montseny-L1obregat se diferencia del resto de los Catalánides, principalmente por existencia, en la secuencia de profundización, de cuatro rupturas sedimentarias interpretadas como superficies karstificadas intra-Muschclkalk. Todo el Muschelkalk inferior se desarrolla en facies mareales en un contexto de rampa carbonatada tipo homoclinal rampo. El estudio palinológico confirma una edad Anisiense medio-superior.