984 resultados para anti-semitism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under conditions of iron limitation Pseudomonas fluorescens ATCC 17400 produces two siderophores, pyoverdine, and a second siderophore quinolobactin, which itself results from the hydrolysis of the unstable molecule 8-hydroxy-4-methoxy-2-quinoline thiocarboxylic acid (thioquinolobactin). Pseudomonas fluorescens ATCC 17400 also displays a strong in vitro antagonism against the Oomycete Pythium, which is repressed by iron, suggesting the involvement of a siderophore(s). While a pyoverdine-negative mutant retains most of its antagonism, a thioquinolobactin-negative mutant only slowed-down Pythium growth, and a double pyoverdine-, thioquinolobactin-negative mutant, which does not produce any siderophore, totally lost its antagonism against Pythium. The siderophore thioquinolobactin could be purified and identified from spent medium and showed anti-Pythium activity, but it was quickly hydrolysed to quinolobactin, which we showed has no antimicrobial activity. Analysis of antagonism-affected transposon mutants revealed that genes involved in haem biosynthesis and sulfur assimilation are important for the production of thioquinolobactin and the expression of antagonism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of highly active antiretroviral therapy (HAART) on HCV replication is controversial, with some studies reporting no effect and others increases, reductions and even clearances of HCV RNA after treatment. In this study, the effect of HAART was investigated on the titre of anti-HCV specific antibodies and on the relationship between these antibodies and HCV RNA level in a cohort of 24 patients with inherited bleeding disorders. A significant inverse correlation between antibodies to both total HCV proteins and HCV RNA (R = -0.42, P = 0.05) and between antibodies to HCV envelope glycoproteins and HCV RNA (R = -0.54, P = 0.01) was observed pre-HAART. The relationship disappeared or was obscured after therapy (R = 0.24, P = 0.30 and R = 0.16, P = 0.50, respectively). Thus, we show that HAART affects the HCV specific humoral immune responses without affecting the HCV RNA level. (C) 2004 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role in the pathogenesis of both atherosclerosis and restenosis. Recent studies suggest that high-dose salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in-vitro and in-vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAIDs) exert similar anti proliferative effects on VSMCs, and do so via a common mechanism of action, remains to be shown. In this study, we demonstrate that the NSAIDs aspirin, sodium salicylate, diclofenac, ibuprofen, indometacin and sulindac induce a dose-dependent inhibition of proliferation in rat A10 VSMCs in the absence of significant cytotoxicity. Flow cytometric analyses showed that exposure of A10 cells to diclofenac, indometacin, ibuprofen and sulindac, in the presence of the mitotic inhibitor, nocodazole, led to a significant G0/G1 arrest. In contrast, the salicylates failed to induce a significant G1 arrest since flow cytometry profiles were not significantly different from control cells. Cyclin A levels were elevated, and hyperphosphorylated p107 was present at significant levels, in salicylate-treated A10 cells, consistent with a post-G1/S block, whereas cyclin A levels were low, and hypophosphorylated p107 was the dominant form, in cells treated with other NSAIDs consistent with a G1 arrest. The ubiquitously expressed cyclin-dependent kinase (CDK) inhibitors, p21 and p27, were increased in all NSAID-treated cells. Our results suggest that diclofenac, indometacin, ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase, whereas the growth inhibitory effect of salicylates probably affects the late S and/or G2/M phases. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit in the treatment of certain vasculoproliferative disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of biologically active molecules as fusion proteins with antibody Fc can substantially extend the plasma half-life of the active agent but may also influence function. We have previously generated a number of fusion proteins comprising a complement regulator coupled to Fc and shown that the hybrid molecule has a long plasma half-life and retains biological activity. However, several of the fusion proteins generated had substantially reduced biological activity when compared with the native regulator or regulator released from the Fc following papain cleavage. We have taken advantage of this finding to engineer a prodrug with low complement regulatory activity that is cleaved at sites of inflammation to release active regulator. Two model prodrugs, comprising, respectively, the four short consensus repeats of human decay accelerating factor (CD55) linked to IgG4 Fc and the three NH2-terminal short consensus repeats of human decay accelerating factor linked to IgG2 Fc have been developed. In each, specific cleavage sites for matrix metalloproteinases and/or aggrecanases have been incorporated between the complement regulator and the Fc. These prodrugs have markedly decreased complement inhibitory activity when compared with the parent regulator in vitro. Exposure of the prodrugs to the relevant enzymes, either purified, or in supernatants of cytokine-stimulated chondrocytes or in synovial fluid, efficiently cleaved the prodrug, releasing active regulator. Such agents, having negligible systemic effects but active at sites of inflammation, represent a paradigm for the next generation of anti-C therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prerequisite for the enrichment of antibodies screened from phage display libraries is their stable expression on a phage during multiple selection rounds. Thus, if stringent panning procedures are employed, selection is simultaneously driven by antigen affinity, stability and solubility. To take advantage of robust pre-selected scaffolds of such molecules, we grafted single-chain Fv (scFv) antibodies, previously isolated from a human phage display library after multiple rounds of in vitro panning on tumor cells, with the specificity of the clinically established murine monoclonal anti-CD22 antibody RFB4. We show that a panel of grafted scFvs retained the specificity of the murine monoclonal antibody, bound to the target antigen with high affinity (6.4-9.6 nM), and exhibited exceptional biophysical stability with retention of 89-93% of the initial binding activity after 6 days of incubation in human serum at 37degreesC. Selection of stable human scaffolds with high sequence identity to both the human germline and the rodent frameworks required only a small number of murine residues to be retained within the human frameworks in order to maintain the structural integrity of the antigen binding site. We expect this approach may be applicable for the rapid generation of highly stable humanized antibodies with low immunogenic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal vascular smooth muscle cell (VSMC) proliferation is known to play an important role in the pathogenesis of atherosclerosis, restenosis and instent stenosis. Recent studies suggest that salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in vitro and in vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAID) exert similar antiproliferative effects on VSMCs, and do so via a common mechanism of action, remains unknown. In the present study, we demonstrated that the NSAIDs, aspirin, ibuprofen and sulindac induced a dose-dependent inhibition of proliferation in rat A10 VSMCs (IC50 = 1666 mumol/L, 937 mumol/L and 520 mumol/L, respectively). These drugs did not show significant cytotoxic effects as determined by LDH release assay, even at the highest concentrations tested (aspirin, 5000 mumol/L; ibuprofen, 2500 mumol/L; and sulindac, 1000 mumol/L). Flow cytometric analyses showed that a 48 h exposure of A10 VSMCs to ibuprofen (1000 mumol/L) and sulindac (750 mumol/L) led to a significant G1 arrest (from 68.7 +/- 2.0% of cells in G1 to 76.6 +/- 2.2% and 75.8 +/- 2.2%, respectively, p < 0.05). In contrast, aspirin (2500 mumol/L) failed to induce a significant G1 arrest (68.1 +/- 5.2%). Clearer evidence of a G1 block was obtained by treatment of cells with the mitotic inhibitor, nocodazole (40 ng/ml), for the final 24 h of the experiment. Under these conditions, aspirin still failed to induce a G1 arrest (from 25.9 +/- 10.9% of cells in G1 to 19.6 +/- 2.3%) whereas ibuprofen and sulindac led to a significant accumulation of cells in G1(51.8% +/- 17.2% and 54.1% +/- 10.6%, respectively, p < 0.05). These results indicate that ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase whereas the effect of aspirin appears to be independent of any special phase of the cell cycle. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit to the treatment of vascular proliferative disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemostat culture was used to determine the effects of the antimicrobial agents tetracycline and nystatin on predominant components of the human gut microflora. Their addition to mixed culture systems caused a non-specific, and variable, decrease in microbial populations, although tetracycline allowed an increase in numbers of yeasts. Both had a profound inhibitory effect upon populations seen as important for gut health (bifidobacteria, lactobacilli). However, a tetracycline resistant Lactobacillus was enriched from the experiments. A combination of genotypic and phenotypic characterisations confirmed its identity as Lactobacillus plantarum. This strain exerted powerful inhibitory effects against Candida albicans. Because of its ability to resist the effects of tetracycline, this organism may be useful as a probiotic for the improved management of yeast related conditions such as thrush and irritable bowel syndrome. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing interest in the potential beneficial effects of flavonoids in the aging and diseased brain. We have investigated the potential of the flavanone hesperetin and two of its metabolites, hesperetin-7-O-beta-D-glucuronide and 5-nitro-hesperetin, to inhibit oxidative stress-induced neuronal apoptosis. Exposure of cortical neurons to hydrogen peroxide led to the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser963, the phosphorylation of c-jun N-terminal kinase and c-Jun (Ser73) and the activation of caspase 3 and caspase 9. Whilst hesperetin glucuronide failed to exert protection, both hesperetin and 5-nitro-hesperetin were effective at preventing neuronal apoptosis via a mechanism involving the activation/phosphorylation of both Akt/protein kinase B and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Protection against oxidative injury and the activation of Akt and ERK1/2 followed a bell-shaped response and was most apparent at 100 nmol/L concentrations. The activation of ERK1/2 and Akt by flavanones led to the inhibition of the pro-apoptotic proteins, apoptosis signal-regulating kinase 1, by phosphorylation at Ser83 and Bad, by phosphorylation at both Ser136 and Ser112 and to the inhibition of peroxide-induced caspase 9 and caspase 3 activation. Thus, flavanones may protect neurons against oxidative insults via the modulation of neuronal apoptotic machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To investigate the effect of various carbon sources on the production of extracellular antagonistic compounds against two Escherichia coli strains and Salmonella enterica serotype Typhimurium by three canine-derived lactobacilli strains. Methods and Materials: Cell-free preparations, pH neutralized, were used in antibiotic disc experiments as an initial screening. The bacteria/carbohydrate combinations that showed inhibition of the growth of those pathogens, were further investigated in batch co-culture experiments. The cell-free supernatants of the cultures, that decreased the population number of the pathogens in the co-culture experiments to log CFU ml(-1) less than or equal to 4, were tested for inhibition of the pathogens in pure cultures at neutral and acidic pH. Conclusions: The results showed that the substrate seems to affect the production of antimicrobial compounds and this effect could not just be ascribed to the ability of the bacteria to grow in the various carbon sources. L. mucosae, L. acidophilus and L. reuteri, when grown in sugar mixtures consisting of alpha-glucosides (Degree of Polymerization (DP) 1-4) could produce antimicrobial compounds active against all three pathogens in vitro. This effect could not be attributed to a single ingredient of those sugar mixtures and was synergistic. This inhibition had a dose-response characteristic and was more active at acidic pH. Significance and Impact of the Study: Knowledge of the effect that the carbon source has on the production of antimicrobial compounds by gut-associated lactobacilli allows the rational design of prebiotic/probiotic combinations to combat gastrointestinal pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied 'food grade' sialyloligosaccharides (SOS) as anti-adhesive drugs or receptor analogues, since the terminal sialic acid residue has already been shown to contribute significantly to the adhesion and pathogenesis of the Vibrio cholerae toxin (Ctx). GM1-oligosaccharide (GM1-OS) was immobilized into a supporting POPC lipid bilayer onto a surface plasmon resonance (SPR) chip, and the interaction between uninhibited Ctx and GM1-OS-POPC was measured. SOS inhibited 94.7% of the Ctx binding to GM1-OS-POPC at 10 mg/mL. The SOS EC50 value of 5.521 mg/mL is high compared with 0.2811 mu g/mL (182.5 pM or 1.825 x 10(-10) M) for GM1-OS. The commercially available sialyloligosaccharide (SOS) mixture Sunsial E (R) is impure, containing one monosialylated and two disialylated oligosaccharides in the ratio 9.6%. 6.5% and 17.5%, respectively, and 66.4% protein. However, these inexpensive food-grade molecules are derived from egg yolk and could be used to fortify conventional food additives, by way of emulsifiers, sweeteners and/or preservatives. The work further supports our hypothesis that SOS could be a promising natural anti-adhesive glycomimetic against Ctx and prevent subsequent onset of disease. (C) 2009 Elsevier Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is one of the most common cancers in Western countries. The World Health Organisation identifies diet as a critical risk factor in the development and progression of this disease and the protective role of high levels of fruit and vegetable consumption. Several studies have shown that apples contain several phenolic compounds that are potent anti-oxidants in humans. However, little is known about other beneficial properties of apple phenolics in cancer. We have used the HT29, HT115 and CaCo-2 cell lines as in vitro models to examine the effect of apple phenolics (0.01–0.1% apple extract) on key stages of colorectal carcinogenesis, namely; DNA damage (Comet assay), colonic barrier function (TER assay), cell cycle progression (DNA content assay) and invasion (Matrigel assay). Our results indicate that a crude extract of apple phenolics can protect against DNA damage, improve barrier function and inhibit invasion (p < 0.05). The anti-invasive effects of the extract were enhanced with twenty-four hour pretreatment of cells (p < 0.05). We have shown that a crude apple extract from waste, rich in phenolic compounds, beneficially influences key stages of carcinogenesis in colon cells in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One hundred and nine lactic acid bacterial strains (56 bifidobacteria-like and 53 lactobacilli-like) were isolated from faecal samples donated by healthy elderly individuals (>65 years old). Isolates were identified to species level by phenotypic analysis (by API) and by 16S rDNA sequencing. Eleven species of Lactobacillus and six species of Bifidobacterium were identified. The most frequently isolated lactobacillus was L. fermentum and the most frequently isolated bifidobacterium was closely related to B. infantis by 16S rDNA sequence alignment. The isolates were characterized for their antimicrobial activity against Clostridium difficile, enteropathogenic Escherichia coli (EPEC), verocytotoxigenic E. coli (VTEC) and Campylobacter jejuni. The lactobacilli displayed variations in their antimicrobial activity with few strains showing inhibitory activity against all pathogens. The bifidobacteria displayed higher levels of inhibitory activity against C. jejuni and Cl. difficile than against the E. coli strains. Keywords: Lactobacillus, Bifidobacterium, elderly, gastrointestinal microbiota, inhibition, Clostridium difficile, enteropathogenic Escherichia coli (EPEC), verocytotoxigenic E. coli (VTEC), Campylobacter jejuni.