959 resultados para algoritmi non evolutivi pattern recognition analisi dati avanzata metodi matematici intelligenza artificiale non evolutive algorithms artificial intelligence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses user target intention recognition algorithms for pointing - clicking tasks to reduce users' pointing time and difficulty. Predicting targets by comparing the bearing angles to targets proposed as one of the first algorithms [1] is compared with a Kalman Filter prediction algorithm. Accuracy and sensitivity of prediction are used as performance criteria. The outcomes of a standard point and click experiment are used for performance comparison, collected from both able-bodied and impaired users. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is about detecting bipedal motion in video sequences by using point trajectories in a framework of classification. Given a number of point trajectories, we find a subset of points which are arising from feet in bipedal motion by analysing their spatio-temporal correlation in a pairwise fashion. To this end, we introduce probabilistic trajectories as our new features which associate each point over a sufficiently long time period in the presence of noise. They are extracted from directed acyclic graphs whose edges represent temporal point correspondences and are weighted with their matching probability in terms of appearance and location. The benefit of the new representation is that it practically tolerates inherent ambiguity for example due to occlusions. We then learn the correlation between the motion of two feet using the probabilistic trajectories in a decision forest classifier. The effectiveness of the algorithm is demonstrated in experiments on image sequences captured with a static camera, and extensions to deal with a moving camera are discussed. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a complete system for expressive visual text-to-speech (VTTS), which is capable of producing expressive output, in the form of a 'talking head', given an input text and a set of continuous expression weights. The face is modeled using an active appearance model (AAM), and several extensions are proposed which make it more applicable to the task of VTTS. The model allows for normalization with respect to both pose and blink state which significantly reduces artifacts in the resulting synthesized sequences. We demonstrate quantitative improvements in terms of reconstruction error over a million frames, as well as in large-scale user studies, comparing the output of different systems. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The DExD/H domain containing RNA helicases such as retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are key cytosolic pattern recognition receptors (PRRs) for detecting nucleotide pathogen associated molecular patterns (PAMPs) of invading viruses. The RIG-I and MDA5 proteins differentially recognise conserved PAMPs in double stranded or single stranded viral RNA molecules, leading to activation of the interferon system in vertebrates. They share three core protein domains including a RNA helicase domain near the C terminus (HELICc), one or more caspase activation and recruitment domains (CARDs) and an ATP dependent DExD/H domain. The RIG-I/MDA5 directed interferon response is negatively regulated by laboratory of genetics and physiology 2 (LGP2) and is believed to be controlled by the mitochondria antiviral signalling protein (MAVS), a CARD containing protein associated with mitochondria. Results: The DExD/H containing RNA helicases including RIG-I, MDA5 and LGP2 were analysed in silico in a wide spectrum of invertebrate and vertebrate genomes. The gene synteny of MDA5 and LGP2 is well conserved among vertebrates whilst conservation of the gene synteny of RIG-I is less apparent. Invertebrate homologues had a closer phylogenetic relationship with the vertebrate RIG-Is than the MDA5/LGP2 molecules, suggesting the RIG-I homologues may have emerged earlier in evolution, possibly prior to the appearance of vertebrates. Our data suggest that the RIG-I like helicases possibly originated from three distinct genes coding for the core domains including the HELICc, CARD and ATP dependent DExD/H domains through gene fusion and gene/domain duplication. Furthermore, presence of domains similar to a prokaryotic DNA restriction enzyme III domain (Res III), and a zinc finger domain of transcription factor (TF) IIS have been detected by bioinformatic analysis. Conclusion: The RIG-I/MDA5 viral surveillance system is conserved in vertebrates. The RIG-I like helicase family appears to have evolved from a common ancestor that originated from genes encoding different core functional domains. Diversification of core functional domains might be fundamental to their functional divergence in terms of recognition of different viral PAMPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High dimensional biomimetic informatics (HDBI) is a novel theory of informatics developed in recent years. Its primary object of research is points in high dimensional Euclidean space, and its exploratory and resolving procedures are based on simple geometric computations. However, the mathematical descriptions and computing of geometric objects are inconvenient because of the characters of geometry. With the increase of the dimension and the multiformity of geometric objects, these descriptions are more complicated and prolix especially in high dimensional space. In this paper, we give some definitions and mathematical symbols, and discuss some symbolic computing methods in high dimensional space systematically from the viewpoint of HDBI. With these methods, some multi-variables problems in high dimensional space can be solved easily. Three detailed algorithms are presented as examples to show the efficiency of our symbolic computing methods: the algorithm for judging the center of a circle given three points on this circle, the algorithm for judging whether two points are on the same side of a hyperplane, and the algorithm for judging whether a point is in a simplex constructed by points in high dimensional space. Two experiments in blurred image restoration and uneven lighting image correction are presented for all these algorithms to show their good behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of information digitalization and the correspondence of digits and the coordinates, Information Science and high-dimensional space have consanguineous relations. With the transforming from the information issues to the point analysis in high-dimensional space, we proposed a novel computational theory, named High dimensional imagery geometry (HDIG). Some computational algorithms of HDIG have been realized using software, and how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is demonstrated in this paper. As the applications, two kinds of experiments of HDIG, which are blurred image restoration and pattern recognition ones, are given, and the results are satisfying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We proposed a novel methodology, which firstly, extracting features from species' complete genome data, using k-tuple, followed by studying the evolutionary relationship between SARS-CoV and other coronavirus species using the method, called "High-dimensional information geometry". We also used the mothod, namely "caculating of Minimum Spanning Tree", to construct the Phyligenetic tree of the coronavirus. From construction of the unrooted phylogenetic tree, we found out that the evolution distance between SARS-CoV and other coronavirus species is comparatively far. The tree accurately rebuilt the three groups of other coronavirus. We also validated the assertion from other literatures that SARS-CoV is similar to the coronavirus species in Group I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the introduction of the traditional mathematical models of neurons in general-purpose neurocomputer, a novel all-purpose mathematical model-Double synaptic weight neuron (DSWN) is presented, which can simulate all kinds of neuron architectures, including Radial-Basis-Function (RBF) and Back-propagation (BP) models, etc. At the same time, this new model is realized using hardware and implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. In this paper, the flexibility of the new model has also been described in constructing neural networks and based on the theory of Biomimetic pattern recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-H neurocomputer. The result showed DSWN neural network has great potential in pattern recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we redefine the sample points set in the feature space from the point of view of weighted graph and propose a new covering model - Multi-Degree-of-Freedorn Neurons (MDFN). Base on this model, we describe a geometric learning algorithm with 3-degree-of-freedom neurons. It identifies the sample points secs topological character in the feature space, which is different from the traditional "separation" method. Experiment results demonstrates the general superiority of this algorithm over the traditional PCA+NN algorithm in terms of efficiency and accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we presents HyperSausage Neuron based on the High-Dimension Space(HDS), and proposes a new algorithm for speaker independent continuous digit speech recognition. At last, compared to HMM-based method, the recognition rate of HyperSausage Neuron method is higher than that of in HMM-based method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digitization is the main feature of modern Information Science. Conjoining the digits and the coordinates, the relation between Information Science and high-dimensional space is consanguineous, and the information issues are transformed to the geometry problems in some high-dimensional spaces. From this basic idea, we propose Computational Information Geometry (CIG) to make information analysis and processing. Two kinds of applications of CIG are given, which are blurred image restoration and pattern recognition. Experimental results are satisfying. And in this paper, how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is also introduced. Lots of the algorithms have been realized using software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One novel neuron with variable nonlinear transfer function is firstly proposed, It could also be called as subsection transfer function neuron. With different transfer function components, by virtue of multi-thresholded, the variable transfer function neuron switch on among different nonlinear excitated state. And the comparison of output's transfer characteristics between it and single-thresholded neuron will be illustrated, with some practical application experiments on Bi-level logic operation, at last the simple comparison with conventional BP, RBF, and even DBF NN is taken to expect the development foreground on the variable neuron.. The novel nonlinear transfer function neuron could implement the random nonlinear mapping relationship between input layer and output layer, which could make variable transfer function neuron have one much wider applications on lots of reseach realm such as function approximation pattern recognition data compress and so on.