947 resultados para agricultural aviation
Resumo:
The road to the automation of the agricultural processes passes through the safe operation of the autonomous vehicles. This requirement is a fact in ground mobile units, but it still has not well defined for the aerial robots (UAVs) mainly because the normative and legislation are quite diffuse or even inexistent. Therefore, to define a common and global policy is the challenge to tackle. This characterization has to be addressed from the field experience. Accordingly, this paper presents the work done in this direction, based on the analysis of the most common sources of hazards when using UAV's for agricultural tasks. The work, based on the ISO 31000 normative, has been carried out by applying a three-step structure that integrates the identification, assessment and reduction procedures. The present paper exposes how this method has been applied to analyze previous accidents and malfunctions during UAV operations in order to obtain real failure causes. It has allowed highlighting common risks and hazardous sources and proposing specific guards and safety measures for the agricultural context.
Resumo:
The Renewable Energy Directive (2009/28/EC) requires that 20% of the EU's energy needs should come from renewable sources by 2020, and includes a target for the transport sector of 10% from biofuels. This report analyses and discusses the global impacts of this biofuel target on agricultural production, markets and land use, as simulated by three agricultural sector models, AGLINK-COSIMO, ESIM and CAPRI. The impacts identified include higher EU production of ethanol and biodiesel, and of the crops used to produce them, as well as more imports of both biofuels. Trade flows of biofuel feedstocks also change to reflect greater EU demand, including a significant increase in vegetable oil imports. However, as the extra demand is small in world market terms, the impact on world market prices is limited. With the EU biofuel target, global use of land for crop cultivation is higher by 5.2 million hectares. About one quarter is area within the EU, some of which would otherwise have left agriculture.
Resumo:
The objective of this study was to verify the effectiveness of new patterns of sowing and to achieve a low-input organic system in two different environments (northern and southern Europe). The study was motivated by the hypothesis that more even sowing patterns (triangular and square) would significantly enhance the growth and yield of forage maize under widely varying conditions, compared with traditional mechanised rectangular seed patterns. An experiment was conducted in Madrid and duplicated in Copenhagen during 2010. A random block design was used with a 2 × 2 factorial arrangement based on two seed-sowing patterns: traditional (rectangular) and new (even) and two weed-management conditions (herbicide use and a low-input system). In both weed-management conditions and locations, the production of aerial maize biomass was greater for the new square seed patterns. In addition, the new pattern showed a greater effectiveness in the control of weeds, both at the initial crop stages (36 and 33% fewer weeds m-2 at the 4- and 8-leaf stages, respectively, in the Copenhagen field experiment) and at the final stage. The final weed biomass for the new pattern was 568 kg ha-1 lower for the Copenhagen experiment and 277 kg ha-1 lower in Madrid field experiments. In the light of these results, the new pattern could potentially reduce the use of herbicides. The results of the experiments support the hypothesis formulated at the beginning of this study that even-sowing patterns would be relatively favourable for the growth and yield of the maize crop. In the near future, new machinery could be used to achieve new seed patterns for the optimisation of biomass yield under low-input systems. This approach is effective because it promotes natural crop-weed competition.
Resumo:
1. Introduction: setting and problem definition 2. The Adaptation Pathway –2.1 Stage 1: appraising risks and opportunities •Step 1: Impact analysis •Step 2: Policy analysis •Step 3: Socio-institutional analysis –2.2 Stage 2: appraising and choosing adaptation opt ions •Step 4: identifying and prioritizing adaptation o ptions 3. Conclusions
Resumo:
One of humanity’s major challenges of the 21st century will be meeting future food demands on an increasingly resource constrained-planet. Global food production will have to rise by 70 percent between 2000 and 2050 to meet effective demand which poses major challenges to food production systems. Doing so without compromising environmental integrity is an even greater challenge. This study looks at the interdependencies between land and water resources, agricultural production and environmental outcomes in Latin America and the Caribbean (LAC), an area of growing importance in international agricultural markets. Special emphasis is given to the role of LAC’s agriculture for (a) global food security and (b) environmental sustainability. We use the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT)—a global dynamic partial equilibrium model of the agricultural sector—to run different future production scenarios, and agricultural trade regimes out to 2050, and assess changes in related environmental indicators. Results indicate that further trade liberalization is crucial for improving food security globally, but that it would also lead to more environmental pressures in some regions across Latin America. Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view. Finally, our analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths.
Resumo:
Nitrate leaching (NL) is an important N loss process in irrigated agriculture that imposes a cost on the farmer and the environment. A meta-analysis of published experimental results from agricultural irrigated systems was conducted to identify those strategies that have proven effective at reducing NL and to quantify the scale of reduction that can be achieved. Forty-four scientific articles were identified which investigated four main strategies (water and fertilizer management, use of cover crops and fertilizer technology) creating a database with 279 observations on NL and 166 on crop yield. Management practices that adjust water application to crop needs reduced NL by a mean of 80% without a reduction in crop yield. Improved fertilizer management reduced NL by 40%, and the best relationship between yield and NL was obtained when applying the recommended fertilizer rate. Replacing a fallow with a non-legume cover crop reduced NL by 50% while using a legume did not have any effect on NL. Improved fertilizer technology also decreased NL but was the least effective of the selected strategies. The risk of nitrate leaching from irrigated systems is high, but optimum management practices may mitigate this risk and maintain crop yields while enhancing environmental sustainability.
Resumo:
Value chain in agriculture is a current issue affecting from farmers to consumers. It questions important issues as profitability, and even though continuity of certain sectors. Although there has been an evolution along time in the structure and concentration of intermediate and final levels of the value chain between distribution and retail sector, a similar evolution seems not to arrive at the initial level of the chain, the production sector. This produces large imbalances in power and leverage between levels of the value chain that could imply several problems for rural actors. Relatively little attention has been paid to possible market distortions caused by the high level of concentration distribution side of the agrifood system.
Resumo:
Sustainability and the food-water-environment nexus. Food-water linkages in global agro-economic models. The CAPRI water module. Potential to jointly assess food and water policies. Pilot case study. Further development.
Resumo:
This study reports the results of a water footprint (WF) assessment of five types of textiles commonly used for the production of jeans, including two different fibres (cotton and Lyocell fibre) and five corresponding production methods for spinning, dyeing and weaving. The results show that the fibre production is the stage with the highest water consumption, being cotton production particularly relevant. Therefore, the study pays particular attention to the water footprint of cotton production and analyses the effects of external factors influencing the water footprint of a product, in this case, the incentives provided by the EU Common Agricultural Policy (CAP), and the relevance of agricultural practices to the water footprint of a product is emphasised. An extensification of the crop production led to higher WF per unit, but a lower overall pressure on the basins water resources. This study performs a sustainability assessment of the estimated cotton WFs with the water scarcity index, as proposed by Hoekstra et al. (2011), and shows their variations in different years as a result of different water consumption by crops in the rest of the river basin. In our case, we applied the assessment to the Guadalquivir, Guadalete and Barbate river basins, three semi-arid rivers in South Spain. Because they are found to be relevant, the available water stored in dams and the outflow are also incorporated as reference points for the sustainability assessment. The study concludes that, in the case of Spanish cotton production, the situation of the basin and the policy impact are more relevant for the status of the basin s water resources than the actual WF of cotton production. Therefore, strategies aimed at reducing the impact of the water footprint of a product need to analyse both the WF along the value chain and within the local context.
Resumo:
The use of biofuels in the aviation sector has economic and environmental benefits. Among the options for the production of renewable jet fuels, hydroprocessed esters and fatty acids (HEFA) have received predominant attention in comparison with fatty acid methyl esters (FAME), which are not approved as additives for jet fuels. However, the presence of oxygen in methyl esters tends to reduce soot emissions and therefore particulate matter emissions. This sooting tendency is quantified in this work with an oxygen-extended sooting index, based on smoke point measurements. Results have shown considerable reduction in the sooting tendency for all biokerosenes (produced by transesterification and eventually distillation) with respect to fossil kerosenes. Among the tested biokerosenes, that made from palm kernel oil was the most effective one, and nondistilled methyl esters (from camelina and linseed oils) showed lower effectiveness than distilled biokerosenes to reduce the sooting tendency. These results may constitute an additional argument for the use of FAME’s as blend components of jet fuels. Other arguments were pointed out in previous publications, but some controversy has aroused over the use of these components. Some of the criticism was based on the fact that the methods used in our previous work are not approved for jet fuels in the standard methods and concluded that the use of FAME in any amount is, thus, inappropriate. However, some of the standard methods are not updated for considering oxygenated components (like the method for obtaining the lower heating value), and others are not precise enough (like the methods for measuring the freezing point), whereas some alternative methods may provide better reproducibility for oxygenated fuels.
Resumo:
The effects of climate change on agriculture are often characterised by changes in the average productivity of crops; however, these indicators provide limited information regarding the risks associated with fluctuations in productivity resulting from future changes in climate variability that may also affect agriculture. In this context, this study evaluates the combined effects of the risks associated with anomalies reflected by changes in the mean crop yield and the variability of productivity in European agroclimatic regions under future climate change scenarios. The objective of this study is to evaluate adaptation needs and to identify regional effects that should be addressed with greater urgency in the light of the risks and opportunities that are identified. The results show differential effects on regional agriculture and highlight the importance of considering both regional average impacts and the variability in crop productivity in setting priorities for the adaptation and maintenance of rural incomes and agricultural insurance programmes
Resumo:
El presente proyecto, titulado “Integral development of an Agricultural Training Center to ensure food security in Glory Special Needs Primary School. Kitgum, Uganda” fue llevado a cabo de Julio de 2011 a Febrero de 2012 en la escuela primaria Glory Special Needs, dedicada a la atención y educación de jóvenes discapacitados, en Kitgum, Uganda. El proyecto se realizó con la colaboración del grupo de cooperación de la ETSI Agrónomos, AgSystems, la Fundación AmigoSolidarios y la ONG local NUCBACD. Su objetivo principal fue el desarrollo y puesta en marcha de un centro de capacitación Agrícola para dotar de igualdad de oportunidades a los jóvenes con discapacidad de Kitgum, potenciando y favoreciendo su integración en la comunidad, y garantizar así la seguridad alimentaria de los 137 alumnos internos en la escuela Glory Special Needs. El trabajo realizado supuso una acción relevante en Kitgum, superando la visión de una economía familiar basada en las actividades agrícolas, para centrarse en la profesionalización de la Agricultura como motor económico de la región. Este documento presenta una descripción de las principales actividades que se desarrollaron con el fin de alcanzar el objetivo planteado, desde un punto de vista educativo, sostenible e inclusivo. Para conseguirlo, se plantearon tres lineas de trabajo: - Programa productivo. - Programa educativo. - Programa organizativo.
Resumo:
Una gestión más eficiente y equitativa del agua a escala de cuenca no se puede centrar exclusivamente en el recurso hídrico en sí, sino también en otras políticas y disciplinas científicas. Existe un consenso creciente de que, además de la consideración de las cambiantes condiciones climáticas, es necesaria una integración de ámbitos de investigación tales como la agronomía, planificación del territorio y ciencias políticas y económicas a fin de satisfacer de manera sostenible las demandas de agua por parte de la sociedad y del medio natural. La Política Agrícola Común (PAC) es el principal motor de cambio en las tendencias de paisajes rurales y sistemas agrícolas, pero el deterioro del medio ambiente es ahora una de las principales preocupaciones. Uno de los cambios más relevantes se ha producido con la expansión e intensificación del olivar en España, principalmente con nuevas zonas de regadío o la conversión de olivares de secano a sistemas en regadío. Por otra parte, el cambio de las condiciones climáticas podría ejercer un papel importante en las tendencias negativas de las aportaciones a los ríos, pero no queda claro el papel que podrían estar jugando los cambios de uso de suelo y cobertura vegetal sobre las tendencias negativas de caudal observadas. Esta tesis tiene como objetivo mejorar el conocimiento de los efectos de la producción agrícola, política agraria y cambios de uso de suelo y cobertura vegetal sobre las condiciones de calidad del agua, respuesta hidrológica y apropiación del agua por parte de la sociedad. En primer lugar, el estudio determina las tendencias existentes de nitratos y sólidos en suspensión en las aguas superficiales de la cuenca del río Guadalquivir durante el periodo de 1998 a 2009. Desde una perspectiva de política agraria, la investigación trata de evaluar mediante un análisis de datos de panel las principales variables, incluyendo la reforma de la PAC de 2003, que están teniendo una influencia en ambos indicadores de calidad. En segundo lugar, la apropiación del agua y el nivel de contaminación por nitratos debido a la producción del aceite de oliva en España se determinan con una evaluación de la huella hídrica (HH), teniendo en cuenta una variabilidad espacial y temporal a largo de las provincias españolas y entre 1997 y 2008. Por último, la tesis analiza los efectos de los cambios de uso de suelo y cobertura vegetal sobre las tendencias negativas observadas en la zona alta del Turia, cabecera de la cuenca del río Júcar, durante el periodo 1973-2008 mediante una modelización ecohidrológica. En la cuenca del Guadalquivir cerca del 20% de las estaciones de monitoreo muestran tendencias significativas, lineales o cuadráticas, para cada indicador de calidad de agua. La mayoría de las tendencias significativas en nitratos están aumentando, y la mayoría de tendencias cuadráticas muestran un patrón en forma de U. Los modelos de regresión de datos de panel muestran que las variables más importantes que empeoran ambos indicadores de calidad del agua son la intensificación de biomasa y las exportaciones de ambos indicadores de calidad procedentes de aguas arriba. En regiones en las que el abandono agrícola y/o desintensificación han tenido lugar han mejorado las condiciones de calidad del agua. Para los nitratos, el desacoplamiento de las subvenciones a la agricultura y la reducción de la cuantía de las subvenciones a tierras de regadío subyacen en la reducción observada de la concentración de nitratos. Las medidas de modernización de regadíos y el establecimiento de zonas vulnerables a nitratos reducen la concentración en subcuencas que muestran una tendencia creciente de nitratos. Sin embargo, el efecto de las exportaciones de nitratos procedente de aguas arriba, la intensificación de la biomasa y los precios de los cultivos presentan un mayor peso, explicando la tendencia creciente observada de nitratos. Para los sólidos en suspensión, no queda de forma evidente si el proceso de desacoplamiento ha influido negativa o positivamente. Sin embargo, los mayores valores de las ayudas agrarias aún ligadas a la producción, en particular en zonas de regadío, conllevan un aumento de las tasas de erosión. Aunque la cuenca del Guadalquivir ha aumentado la producción agrícola y la eficiencia del uso del agua, el problema de las altas tasas de erosión aún no ha sido mitigado adecuadamente. El estudio de la huella hídrica (HH) revela que en 1 L de aceite de oliva español más del 99,5% de la HH está relacionado con la producción de la aceituna, mientras que menos del 0,5% se debe a otros componentes, es decir, a la botella, tapón y etiqueta. Durante el período estudiado, la HH verde en secano y en regadío representa alrededor del 72% y 12%, respectivamente, del total de la HH. Las HHs azul y gris representan 6% y 10%, respectivamente. La producción de aceitunas se concentra en regiones con una HH menor por unidad de producto. La producción de aceite de oliva ha aumentado su productividad del agua durante 1997-2008, incentivado por los crecientes precios del aceite, como también lo ha hecho la cantidad de exportaciones de agua virtual. De hecho, las mayores zonas productoras presentan una eficiencia alta del uso y de productividad del agua, así como un menor potencial de contaminación por nitratos. Pero en estas zonas se ve a la vez reflejado un aumento de presión sobre los recursos hídricos locales. El aumento de extracciones de agua subterránea relacionadas con las exportaciones de aceite de oliva podría añadir una mayor presión a la ya estresada cuenca del Guadalquivir, mostrando la necesidad de equilibrar las fuerzas del mercado con los recursos locales disponibles. Los cambios de uso de suelo y cobertura vegetal juegan un papel importante en el balance del agua de la cuenca alta del Turia, pero no son el principal motor que sustenta la reducción observada de caudal. El aumento de la temperatura es el principal factor que explica las mayores tasas de evapotranspiración y la reducción de caudales. Sin embargo, los cambios de uso de suelo y el cambio climático han tenido un efecto compensatorio en la respuesta hidrológica. Por un lado, el caudal se ha visto afectado negativamente por el aumento de la temperatura, mientras que los cambios de uso de suelo y cobertura vegetal han compensado positivamente con una reducción de las tasas de evapotranspiración, gracias a los procesos de disminución de la densidad de matorral y de degradación forestal. El estudio proporciona una visión que fortalece la interdisciplinariedad entre la planificación hidrológica y territorial, destacando la necesidad de incluir las implicaciones de los cambios de uso de suelo y cobertura vegetal en futuros planes hidrológicos. Estos hallazgos son valiosos para la gestión de la cuenca del río Turia, y el enfoque empleado es útil para la determinación del peso de los cambios de uso de suelo y cobertura vegetal en la respuesta hidrológica en otras regiones. ABSTRACT Achieving a more efficient and equitable water management at catchment scale does not only rely on the water resource itself, but also on other policies and scientific knowledge. There is a growing consensus that, in addition to consideration of changing climate conditions, integration with research areas such as agronomy, land use planning and economics and political science is required to meet sustainably the societal and environmental water demands. The Common Agricultural Policy (CAP) is a main driver for trends in rural landscapes and agricultural systems, but environmental deterioration is now a principal concern. One of the most relevant changes has occurred with the expansion and intensification of olive orchards in Spain, taking place mainly with new irrigated areas or with the conversion from rainfed to irrigated systems. Moreover, changing climate conditions might exert a major role on water yield trends, but it remains unclear the role that ongoing land use and land cover changes (LULCC) might have on observed river flow trends. This thesis aims to improve the understanding of the effects of agricultural production, policies and LULCC on water quality conditions, hydrological response and human water appropriation. Firstly, the study determines the existing trends for nitrates and suspended solids in the Guadalquivir river basin’s surface waters (south Spain) during the period from 1998 to 2009. From a policy perspective, the research tries to assess with panel data analysis the main drivers, including the 2003 CAP reform, which are having an influence on both water quality indicators. Secondly, water appropriation and nitrate pollution level originating from the production of olive oil in Spain is determined with a water footprint (WF) assessment, considering a spatial temporal variability across the Spanish provinces and from 1997 to 2008 years. Finally, the thesis analyzes the effects of the LULCC on the observed negative trends over the period 1973-2008 in the Upper Turia basin, headwaters of the Júcar river demarcation (east Spain), with ecohydrological modeling. In the Guadalquivir river basin about 20% of monitoring stations show significant trends, linear or quadratic, for each water quality indicator. Most significant trends of nitrates are augmenting than decreasing, and most significant quadratic terms of both indicators exhibit U-shaped patterns. The panel data models show that the most important drivers that are worsening nitrates and suspended solids in the basin are biomass intensification and exports of both water quality indicators from upland regions. In regions that agricultural abandonment and/or de-intensification have taken place the water quality conditions have improved. For nitrates, the decoupling of agricultural subsidies and the reduction of the amount of subsidies to irrigated land underlie the observed reduction of nitrates concentration. Measures of irrigation modernization and establishment of vulnerable zones to nitrates ameliorate the concentration of nitrates in subbasins showing an increasing trend. However, the effect of nitrates load from upland areas, intensification of biomass and crop prices present a greater weight leading to the final increasing trend in this subbasins group, where annual crops dominate. For suspended solids, there is no clear evidence that decoupling process have influenced negatively or positively. Nevertheless, greater values of subsidies still linked to production, particularly in irrigated regions, lead to increasing erosion rates. Although agricultural production has augmented in the basin and water efficiency in the agricultural sector has improved, the issue of high erosion rates has not yet been properly faced. The water footprint (WF) assessment reveals that for 1 L Spanish olive oil more than 99.5% of the WF is related to the olive fruit production, whereas less than 0.5% is due to other components i.e. bottle, cap and label. Over the studied period, the green WF in rainfed and irrigated systems represents about 72% and 12%, respectively, of the total WF. Blue and grey WFs represent 6% and 10%, respectively. The olive production is concentrated in regions with the smallest WF per unit of product. The olive oil production has increased its apparent water productivity from 1997 to 2008 incentivized by growing trade prices, but also did the amount of virtual water exports. In fact, the largest producing areas present high water use efficiency per product and apparent water productivity as well as less nitrates pollution potential, but this enhances the pressure on the available water resources. Increasing groundwater abstractions related to olive oil exports may add further pressure to the already stressed Guadalquivir basin. This shows the need to balance the market forces with the available local resources. Concerning the effects of LULCC on the Upper Turia basin’s streamflow, LULCC play a significant role on the water balance, but it is not the main driver underpinning the observed reduction on Turia's streamflow. Increasing mean temperature is the main factor supporting larger evapotranspiration rates and streamflow reduction. In fact, LULCC and climate change have had an offsetting effect on the streamflow generation during the study period. While streamflow has been negatively affected by increasing temperature, ongoing LULCC have positively compensated with reduced evapotranspiration rates, thanks to mainly shrubland clearing and forest degradation processes. The research provides insight for strengthening the interdisciplinarity between hydrological and spatial planning, highlighting the need to include the implications of LULCC in future hydrological plans. These findings are valuable for the management of the Turia river basin, as well as a useful approach for the determination of the weight of LULCC on the hydrological response in other regions.
Resumo:
Agriculture significantly contributes to global greenhouse gas (GHG) missions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3?) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3? addition were the main factors affecting N2O fluxes, whilst glucose, NO3? and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with Little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.
Resumo:
In an environment where there is no communication between different social levels and which is suffering an increasing demand in agricultural production, agribusiness and quality, trade, as a regulator of the supply and demand, has a strong impact on the economic and environmental areas as well as on the farmers quality of life. This entails the need to find a sustainable and fair balance between the different parties (farmers and traders). This paper seeks to find this balance through the integration of trade with prosperity, understood not from a purely economic point of view, but as an improvement in life quality. This proposal is framed within Working With People (WWP) as the main conceptual base for achieving concrete actions that will promote a rapprochement between the parties that will lead to the sector?s sustainable resilience. This will be achieved through a exhaustive review of scientific literature in order to analyze and develop the state of the art of the concepts involved. The result is a conceptual proposal presented from the three dimensions of the WWP model: technical-entrepeneurial, ethical-social, political-contextual"