955 resultados para Zn2GeO4:Mn Phosphor
Resumo:
A family of LiMO2 materials (M=Ni0.25Mn0.75) was prepared from Na1.2-xLixMO∂ precursors (0≤x≤0.6) via ion exchange. The resulting IE products were examined via XRD and compared to simulated XRD patterns produced using DIFFax to determine the defect structures resulting from the IE process. For the 0.1≤x≤0.6 materials, it is observed that there are 3 LiMO2 sub-phases with different Li contents present. As the amount of Li in the precursor increases, the amount of each phase changes resulting in a net shift to higher 2-theta; corresponding to an overall decrease in lattice parameter, approaching the theoretical values for LiMO2. Additionally, as x increases, the probability of O3-type shifting increases, most likely due to an increase in the amount O3-Li2MO3 minority phase which acts to weaken bonds in the TM layer, allowing the O3 shift to occur more easily. For the x=0 IE product, it was seen that the product had an ~O2-type structure, but with lattice parameters closer to those expected for a NaMO2 material.
Resumo:
Here, we present sedimentological, trace metal, and molecular evidence for tracking bottom water redox-state conditions during the past 12,500 years in nowadays sulfidic and meromictic Lake Cadagno (Switzerland). A 10.5 m long sediment core from the lake covering the Holocene period was investigated for concentration variations of the trace metals Mn and Mo (XRF core scanning and ICP-MS measurements), and for the presence of anoxygenic phototrophic sulfur bacteria (carotenoid pigment analysis and 16S rDNA real time PCR). Our trace metal analysis documents an oxic-intermediate-sulfidic redox-transition period beginning shortly after the lake formation similar to 12.5 kyr ago. The oxic period is characterized by low sedimentary Mn and Mo concentrations, as well as by the absence of any remnants of anoxygenic phototrophic sulfur bacteria. Enhanced accumulation/preservation of Mn (up to 5.6 wt%) in the sediments indicates an intermediate, Mn-enriched oxygenation state with fluctuating redox conditions during a similar to 2300-year long transition interval between similar to 12.1 and 9.8 kyr BP. We propose that the high Mn concentrations are the result of enhanced Mn2+ leaching from the sediments during reducing conditions and subsequent rapid precipitation of Mn-(oxyhydr) oxide minerals during episodic and short-term water-column mixing events mainly due to flood-induced underflows. At 9800 +/- 130 cal yr BP, a rapid transition to fully sulfidic conditions is indicated by the marked enrichment of Mo in the sediments (up to 490 ppm), accompanied by an abrupt drop in Mn concentrations and the increase of molecular biomarkers that indicate the presence of anoxygenic photosynthetic bacteria in the water column. Persistently high Mo concentrations >80 ppm provide evidence that sulfidic conditions prevailed thereafter until modern times, without any lasting hypolimnetic ventilation and reoxygenation. Hence, Lake Cadagno with its persistently stable chemocline offers a framework to study in great temporal detail over similar to 12 kyr the development of phototrophic sulfur bacteria communities and redox processes in a sulfidic environment, possibly depicting analogous conditions in an ancient ocean. Our study underscores the value of combining sedimentological, geochemical, and microbiological approaches to characterize paleo-environmental and -redox conditions in lacustrine and marine settings.
Resumo:
In griech. Schr.
Resumo:
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium in- quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 lg g-1),Al (154 ± 15 lg g-1), Li (30 ± 2 lg g-1), Fe (2.2 ± 0.3 lg g-1), Mn (0.34 ± 0.04 lg g-1), Ge (1.7 ± 0.2 lg g-1) and Ga (0.020 ± 0.002 lg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. oncentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.
Resumo:
[Isaak aus Tyrnau]
Resumo:
[Isaak aus Tyrnau]
Resumo:
Digitalisat der Ausg. Ofenbach, [i.e. circa 1810]
Resumo:
Digitalisat der Ausg. Ofenbach, [1811/12]
Resumo:
Digitalisat der Ausg. Rödelheim, 1800
Resumo:
[Isaak Ben-Salomon Ibn-Abi-Sahula]