1000 resultados para Zhang
Resumo:
Novel species of fungi described in the present study include the following from South Africa: Alanphillipsia aloeicola from Aloe sp., Arxiella dolichandrae from Dolichandra unguiscati, Ganoderma austroafricanum from Jacaranda mimosifolia, Phacidiella podocarpi and Phaeosphaeria podocarpi from Podocarpus latifolius, Phyllosticta mimusopisicola from Mimusops zeyheri and Sphaerulina pelargonii from Pelargonium sp. Furthermore, Barssia maroccana is described from Cedrus atlantica (Morocco), Codinaea pini from Pinus patula (Uganda), Crucellisporiopsis marquesiae from Marquesia acuminata (Zambia), Dinemasporium ipomoeae from Ipomoea pes-caprae (Vietnam), Diaporthe phragmitis from Phragmites australis (China), Marasmius vladimirii from leaf litter (India), Melanconium hedericola from Hedera helix (Spain), Pluteus albotomentosus and Pluteus extremiorientalis from a mixed forest (Russia), Rachicladosporium eucalypti from Eucalyptus globulus (Ethiopia), Sistotrema epiphyllum from dead leaves of Fagus sylvatica in a forest (The Netherlands), Stagonospora chrysopyla from Scirpus microcarpus (USA) and Trichomerium dioscoreae from Dioscorea sp. (Japan). Novel species from Australia include: Corynespora endiandrae from Endiandra introrsa, Gonatophragmium triuniae from Triunia youngiana, Penicillium coccotrypicola from Archontophoenix cunninghamiana and Phytophthora moyootj from soil. Novelties from Iran include Neocamarosporium chichastianum from soil and Seimatosporium pistaciae from Pistacia vera, Xenosonderhenia eucalypti and Zasmidium eucalyptigenum are newly described from Eucalyptus urophylla in Indonesia. Diaporthe acaciarum and Roussoella acacia are newly described from Acacia tortilis in Tanzania. New species from Italy include Comoclathris spartii from Spartium junceum and Phoma tamaricicola from Tamarix gallica. Novel genera include (Ascomycetes): Acremoniopsis from forest soil and Collarina from water sediments (Spain), Phellinocrescentia from a Phellinus sp. (French Guiana), Neobambusicola from Strelitzia nicolai (South Africa), Neocladophialophora from Quercus robur (Germany), Neophysalospora from Cotymbia henryi (Mozambique) and Xenophaeosphaeria from Grewia sp. (Tanzania). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Resumo:
Novel species of fungi described in the present study include the following from South Africa: Alanphillipsia aloeicola from Aloe sp., Arxiella dolichandrae from Dolichandra unguiscati, Ganoderma austroafricanum from Jacaranda mimosifolia, Phacidiella podocarpi and Phaeosphaeria podocarpi from Podocarpus latifolius, Phyllosticta mimusopisicola from Mimusops zeyheri and Sphaerulina pelargonii from Pelargonium sp. Furthermore, Barssia maroccana is described from Cedrus atlantica (Morocco), Codinaea pini from Pinus patula (Uganda), Crucellisporiopsis marquesiae from Marquesia acuminata (Zambia), Dinemasporium ipomoeae from Ipomoea pes-caprae (Vietnam), Diaporthe phragmitis from Phragmites australis (China), Marasmius vladimirii from leaf litter (India), Melanconium hedericola from Hedera helix (Spain), Pluteus albotomentosus and Pluteus extremiorientalis from a mixed forest (Russia), Rachicladosporium eucalypti from Eucalyptus globulus (Ethiopia), Sistotrema epiphyllum from dead leaves of Fagus sylvatica in a forest (The Netherlands), Stagonospora chrysopyla from Scirpus microcarpus (USA) and Trichomerium dioscoreae from Dioscorea sp. (Japan). Novel species from Australia include: Corynespora endiandrae from Endiandra introrsa, Gonatophragmium triuniae from Triunia youngiana, Penicillium coccotrypicola from Archontophoenix cunninghamiana and Phytophthora moyootj from soil. Novelties from Iran include Neocamarosporium chichastianum from soil and Seimatosporium pistaciae from Pistacia vera, Xenosonderhenia eucalypti and Zasmidium eucalyptigenum are newly described from Eucalyptus urophylla in Indonesia. Diaporthe acaciarum and Roussoella acacia are newly described from Acacia tortilis in Tanzania. New species from Italy include Comoclathris spartii from Spartium junceum and Phoma tamaricicola from Tamarix gallica. Novel genera include (Ascomycetes): Acremoniopsis from forest soil and Collarina from water sediments (Spain), Phellinocrescentia from a Phellinus sp. (French Guiana), Neobambusicola from Strelitzia nicolai (South Africa), Neocladophialophora from Quercus robur (Germany), Neophysalospora from Cotymbia henryi (Mozambique) and Xenophaeosphaeria from Grewia sp. (Tanzania). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Resumo:
Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed.
Resumo:
The black rot disease of Vitis species and other host genera of Vitacease is caused by Phyllosticta ampelicida and allied taxa which is considered to be a species complex. In this paper, we introduce four new species of Phyllosticta, including two from the P. ampelicida complex, based on a polyphasic characterization including disease symptoms and host association, morphology, and molecular phylogeny. The phylogenetic analysis was conducted based on the ribosomal internal transcribed spacer (ITS) region and a combined multi-locus alignment of the ITS, actin (ACT), partial translation elongation factor 1-alpha (TEF-1), and glyceraldehydes 3-phosphate dehydrogenase (GPDH) gene regions. Our study confirms the phylogenetic distinctions of the four new species, as well as their phenotypic differences with known species in the genus.
Resumo:
Sorghum (Sorghum bicolor) is one of the most important cereal crops globally and a potential energy plant for biofuel production. In order to explore genetic gain for a range of important quantitative traits, such as drought and heat tolerance, grain yield, stem sugar accumulation, and biomass production, via the use of molecular breeding and genomic selection strategies, knowledge of the available genetic variation and the underlying sequence polymorphisms, is required.
Resumo:
Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm(3)g(-1)) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 mu g)/SV-140 (500 mu g) and FD oE2 (100 mu g)/SV-140 (500 mu g) to induce long-term immunity was compared to immunisation with oE2 (100 mu g) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 mu g) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 mu g SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications.
Resumo:
This paper addresses an output feedback control problem for a class of networked control systems (NCSs) with a stochastic communication protocol. Under the scenario that only one sensor is allowed to obtain the communication access at each transmission instant, a stochastic communication protocol is first defined, where the communication access is modelled by a discrete-time Markov chain with partly unknown transition probabilities. Secondly, by use of a network-based output feedback control strategy and a time-delay division method, the closed-loop system is modeled as a stochastic system with multi time-varying delays, where the inherent characteristic of the network delay is well considered to improve the control performance. Then, based on the above constructed stochastic model, two sufficient conditions are derived for ensuring the mean-square stability and stabilization of the system under consideration. Finally, two examples are given to show the effectiveness of the proposed method.
Resumo:
The concession agreement is the core feature of BOT projects, with the concession period being the most essential feature in determining the time span of the various rights, obligations and responsibilities of the government and concessionaire. Concession period design is therefore crucial for financial viability and determining the benefit/cost allocation between the host government and the concessionaire. However, while the concession period and project life span are essentially interdependent, most methods to date consider their determination as contiguous events that are determined exogenously. Moreover, these methods seldom consider the, often uncertain, social benefits and costs involved that are critical in defining, pricing and distributing benefits and costs between the various parties and evaluating potentially distributable cash flows. In this paper, we present the results of the first stage of a research project aimed at determining the optimal build-operate-transfer (BOT) project life span and concession period endogenously and interdependently by maximizing the combined benefits of stakeholders. Based on the estimation of the economic and social development involved, a negotiation space of the concession period interval is obtained, with its lower boundary creating the desired financial return for the private investors and its upper boundary ensuring the economic feasibility of the host government as well as the maximized welfare within the project life. The outcome of the new quantitative model is considered as a suitable basis for future field trials prior to implementation. The structure and details of the model are provided in the paper with Hong Kong tunnel project as a case study to demonstrate its detailed application. The basic contributions of the paper to the theory of construction procurement are that the project life span and concession period are determined jointly and the social benefits taken into account in the examination of project financial benefits. In practical terms, the model goes beyond the current practice of linear-process thinking and should enable engineering consultants to provide project information more rationally and accurately to BOT project bidders and increase the government's prospects of successfully entering into a contract with a concessionaire. This is expected to generate more negotiation space for the government and concessionaire in determining the major socioeconomic features of individual BOT contracts when negotiating the concession period. As a result, the use of the model should increase the total benefit to both parties.
Resumo:
In this study, for the first time the effects of glycerol on enzymatic hydrolysis and ethanol fermentation were investigated. Enzymatic hydrolysis was inhibited slightly with 2.0 wt% glycerol, leading to reduction in glucan digestibility from 84.9% without glycerol to 82.9% (72 h). With 5.0 wt% and 10.0 wt% glycerol, glucan digestibility reduced by 4.5% and11.0%, respectively. However, glycerol appeared not detrimental to cellulase enzymes. Ethanol fermentation was not affected with glycerol up to 5.0 wt%, and was inhibited slightly with 10.0 wt% glycerol, which resulted in reduction in ethanol yield from 86.0% without glycerol to 83.7% (20 h). Based on laboratory and pilot scale enzymatic hydrolysis and ethanol production results, it was estimated that 0.142 kg ethanol could be produced from 1.0 kg dry bagasse (a glucan content of 38.0%) after pretreatment with acidified glycerol solution.
Resumo:
Oil palm empty fruit bunch (EFB) is a readily available, lignocellulosic biomass that has potential to be utilized as a carbon substrate for microbial oil production. In order to evaluate the production of microbial oil from EFB, a technical study was performed through the cultivation of oleaginous micro-organisms (Rhodotorula mucilaginosa, Aspergillus oryzae, and Mucor plumbeus) on EFB hydrolyzates. EFB hydrolyzates were prepared through dilute acid pre-treatment of the biomass, where the liquid fraction of pre-treatment was detoxified and used as an EFB liquid hydrolyzate (EFBLH). The solid residue was enzymatically hydrolyzed prior to be used as an EFB enzymatic hydrolyzate (EFBEH). The highest oil concentrations were obtained from M. plumbeus (1.9 g/L of oil on EFBLH and 4.7 g/L of oil on EFBEH). In order to evaluate the feasibility of large-scale microbial oil production, a techno-economic study was performed based on the oil yields of M. plumbeus per hectare of plantation, followed by the estimation of the feedstock cost for oil production. Other oil palm biomasses (frond and trunk) were also included in this study, as it could potentially improve the economics of large-scale microbial oil production. Microbial oil from oil palm biomasses was estimated to potentially increase oil production in the palm oil industry up to 25%, at a cheaper feedstock cost. The outcome of this study demonstrates the potential integration of microbial oil production from oil palm biomasses with existing palm oil industry (biodiesel, food and oleochemicals production), that could potentially enhance sustainability and profitability of microbial oil production.
Resumo:
This study investigated the potential use of sugarcane bagasse as a feedstock for oil production through microbial cultivation. Bagasse was subjected to dilute acid pretreatment with 0.4 wt% H2SO4 (in liquid) at a solid/liquid ratio of 1:6 (wt/wt) at 170 °C for 15 min, followed by enzymatic hydrolysis of solid residue. The liquid fractions of the pretreatment process and the enzymatic hydrolysis process were detoxified and used as liquid hydrolysate (SCBLH) and enzymatic hydrolysate (SCBEH) for the microbial oil production by oleaginous yeast (Rhodotorula mucilaginosa) and filamentous fungi (Aspergillus oryzae and Mucor plumbeus). The results showed that all strains were able to grow and produce oil from bagasse hydrolysates. The highest oil concentrations produced from bagasse hydrolysates were by M. plumbeus at 1.59 g/L (SCBLH) and 4.74 g/L (SCBEH). The microbial oils obtained have similar fatty acid compositions to vegetable oils, indicating that the oil can be used for the production of second generation biodiesel. On the basis of oil yields obtained by M. plumbeus, from 10 million t (wet weight) of bagasse generated annually from sugar mills in Australia, it is estimated that the total biodiesel that could be produced would be equivalent to about 9% of Queensland’s diesel consumption.
Resumo:
Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that single-nucleotide polymorphisms (SNPs) that may modulate protein phosphorylation could affect osteoporosis risk. Based on a previous conventional genome-wide association (GWA) study, we conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for femoral neck (FN)-bone mineral density (BMD), total hip (HIP)-BMD, and lumbar spine (LS)-BMD phenotypes. In stage 1, 9593 phosSNPs were meta-analyzed in 11,140 individuals of various ancestries. Genome-wide significance (GWS) and suggestive significance were defined by α = 5.21 × 10–6 (0.05/9593) and 1.00 × 10–4, respectively. In stage 2, nine stage 1–discovered phosSNPs (based on α = 1.00 × 10–4) were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs that replicated in stage 2 (based on α = 5.56 × 10–3, 0.05/9) were de novo genotyped in two independent cohorts. IDUA rs3755955 and rs6831280, and WNT16 rs2707466 were associated with BMD phenotypes in each respective stage, and in three stages combined, achieving GWS for both FN-BMD (p = 8.36 × 10–10, p = 5.26 × 10–10, and p = 3.01 × 10–10, respectively) and HIP-BMD (p = 3.26 × 10–6, p = 1.97 × 10–6, and p = 1.63 × 10–12, respectively). Although in vitro studies demonstrated no differences in expressions of wild-type and mutant forms of IDUA and WNT16B proteins, in silico analyses predicts that WNT16 rs2707466 directly abolishes a phosphorylation site, which could cause a deleterious effect on WNT16 protein, and that IDUA phosSNPs rs3755955 and rs6831280 could exert indirect effects on nearby phosphorylation sites. Further studies will be required to determine the detailed and specific molecular effects of these BMD-associated non-synonymous variants. © 2015 American Society for Bone and Mineral Research.
Resumo:
Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis , by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.
Resumo:
Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.
Resumo:
MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNAs' Target Sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)-, and femoral neck (FN)-bone mineral density (BMD). In stage I, 41,102 poly-miRTSs were meta-analyzed in 7 cohorts with a genome-wide significance (GWS) α=0.05/41,102=1.22×10-6. By applying α=5×10-5 (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P-value=7.67×10-6 and 1.58×10-5) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P-value=5.08×10-3) at α=0.10/11=9.09×10-3. PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P-value=7.55×10-6) at α=0.05/2=0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P-value=8.87×10-12). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation. © The Author 2015. Published by Oxford University Press. All rights reserved.