999 resultados para Zebrafish Proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolutionary distribution of chloroplast and mitochondrial division proteins has been investigated, gleaning new insights to the evolution of organelle division: specifically the use and features of FtsZ and dynamin-like proteins. Additional novel proteins that are potentially involved in mitochondrial division have been identified in Dictyostelium discoideum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological copper homeostasis involves striking a balance between absorption and secretion. ATP7A was identified at the trans-Golgi network but relocalized to vesicles under copper exposure in the intestine. This suggests that ATP7A may be a rate limiting step in intestinal uptake of copper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new adipokine, chemerin, was identified and its expression in P. obesus and in humans suggests that it is an important contributor to the development of obesity and type 2 diabetes. Polymorphisms within the CHEMERIN gene further support its involvement in obesity and type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytokines are proteins that provide essential signals to blood and immune cells. The evolution of this system was determined from primitive organisms to humans and zebrafish. Analysis of zebrafish granulocyte colony-stimulating factor (GCSF) signalling revealed broad conservation of function with mammals and a novel role in white blood cell migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor receptor (GCSFR) signaling participates in the production of neutrophilic granulocytes during normal hematopoietic development, with a particularly important role during emergency hematopoiesis. This study describes the characterization of the zebrafish gcsf and gcsfr genes, which showed broad conservation and similar regulation to their mammalian counterparts. Morpholino-mediated knockdown of gcsfr and overexpression of gcsf revealed the presence of an anterior population of myeloid cells during primitive hematopoiesis that was dependent on GCSF/GCSFR for development and migration. This contrasted with a posterior domain that was largely independent of this pathway. Definitive myelopoiesis was also partially dependent on a functional GCSF/GCSFR pathway. Injection of bacterial lipopolysaccharide elicited significant induction of gcsf expression and emergency production of myeloid cells, which was abrogated by gcsfr knockdown. Collectively, these data demonstrate GCSF/GCSFR to be a conserved signaling system for facilitating the production of multiple myeloid cell lineages in both homeostatic and emergency conditions, as well as for early myeloid cell migration, establishing a useful experimental platform for further dissection of this pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum causes the virulent form of malaria and disease manifestations are linked to growth inside infected erythrocytes. To survive and evade host responses the parasite remodels the erythrocyte by exporting several hundred effector proteins beyond the surrounding parasitophorous vacuole membrane. A feature of exported proteins is a pentameric motif (RxLxE/Q/D) that is a substrate for an unknown protease. Here we show that the protein responsible for cleavage of this motif is plasmepsin V (PMV), an aspartic acid protease located in the endoplasmic reticulum. PMV cleavage reveals the export signal (xE/Q/D) at the amino terminus of cargo proteins. Expression of an identical mature protein with xQ at the N terminus generated by signal peptidase was not exported, demonstrating that PMV activity is essential and linked with other key export events. Identification of the protease responsible for export into erythrocytes provides a novel target for therapeutic intervention against this devastating disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide emergence of Industrial biotechnology (IB) is providing opportunities to produce enzymes/proteins with variety of industrial/therapeutic applications. In transitioning the Australian economy towards a sustainable future, Federal government identified the development of IB pathway which would ensure increased productivity, enhanced sustainability, health, safety and reduced environmental footprint. The presentation will revolve around specific stories that drives Deakin University newest technology platform which applies biology and fermentation in an integrated way to play a crucial role in developing cost-effective technologies for the development of molecules that can benefit pharmaceutical and food industry in regional Victoria and Australia in general. The talk will also highlight specific examples where new products like recombinant rhamnosidase (an enzyme used for the production of flavonoids with health benefits) and ribosome inactivating proteins (detected in medicinal plants which possess RNA N- glycosidase activity that depurinates the major rRNA, thus damaging ribosome in an irreversible manner and arresting protein synthesis) would be made available through bioprocessing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribosome inactivating proteins (RIPs) from plants possess RNA N- glycosidase activity that depurinates the major rRNA, thus damaging ribosomes in an irreversible manner and arresting protein synthesis. RIPs are presently classified as rRNA N-glycosidase in the enzyme nomenclature (EC 3.2.2.22) and do exhibit other enzymatic activities such as ribonuclease and deoxyribonuclease activities. RIPs have been shown to manifest anti-tumor, anti-viral and anti-microbial activities. RIPs are detected in some medicinal plants but the yields are insufficient to warrant their availability to conduct clinical trials thus limiting its therapeutic potential. Here, an approach based on "bioprocess development" shall be discussed that may enhance the yield of RIPs. It is anticipated; with the involvement of “Industrial biotechnology” the eventual availability of RIPs in large quantities shall be accomplished.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribosome inactivating proteins (RIPs) from plants possess RNA N- glycosidase activity that depurinates the major rRNA, thus damaging ribosomes in an irreversible manner and arresting protein synthesis. RIPs are presently classified as rRNA N-glycosidase in the enzyme nomenclature (EC 3.2.2.22) and do exhibit other enzymatic activities such as ribonuclease and deoxyribonuclease activities. RIPs have been shown to manifest abortifacient, anti-tumor, anti-viral and anti-microbial activities. RIPs are detected in some medicinal plants but the yields are insufficient to warrant their availability to conduct clinical trials for therapeutic application. Here, we describe an approach based on “bioprocess development” that may enhance the yield of RIPs and eventually their availability for exploiting their therapeutic potential.