963 resultados para Yield stress
Resumo:
Lime application recommendations for amendment of soil acidity in sugarcane were developed with a burnt cane harvesting system in mind. Sugarcane is now harvested in most areas without burning, and lime application for amendment of soil acidity in this system in which the sugarcane crop residue remains on the ground has been carried out without a scientific basis. The aim of this study was to evaluate the changes in soil acidity and stalk and sugar yield with different rates of surface application of calcium, magnesium silicate, and gypsum in ratoon cane. The experiment was performed after the 3rd harvest of the variety SP 81-3250 in a commercial green sugarcane plantation of the São Luiz Sugar Mill (47º 25' 33" W; 21º 59' 46" S), located in Pirassununga, São Paulo, in southeast Brazil. A factorial arrangement of four Ca-Mg silicate rates (0, 850, 1700, and 3400 kg ha-1) and two gypsum rates (0 and 1700 kg ha-1) was used in the experiment. After 12 months, the experiment was harvested and technological measurements of stalk and sugar yield were made. After harvest, soil samples were taken at the depths of 0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.40-0.60 m in all plots, and the following determinations were made: soil pH in CaCl2, organic matter, P, S, K, Ca, Mg, H+Al, Al, Si, and base saturation. The results show that the application of gypsum reduced the exchangeable Al3+ content and Al saturation below 0.05 m, and increased the Ca2+ concentration in the whole profile, the Mg2+ content below 0.10 m, K+ below 0.4 m, and base saturation below 0.20 m. This contributed to the effect of surface application of silicate on amendment of soil acidity reaching deeper layers. From the results of this study, it may be concluded that the silicate rate recommended may be too low, since the greater rates used in this experiment showed greater reduction in soil acidity, higher levels of nutrients at greater depths and an increase in stalk and sugar yield.
Resumo:
Objective: There is little evidence regarding the benefit of stress ulcer prophylaxis (SUP) outside critical care setting. Over-prescription of SUP is not devoid of risks. This prospective study aimed to evaluate the use of proton pump inhibitors (PPIs) for SUP in a general surgery department.Methods: Data collection was performed prospectively during an 8-week period on patients hospitalized in a general surgery department (58 beds) by pharmacists. Patients with a PPI prescription for the treatment of ulcers, gastro-oesophageal reflux disease, oesophagitis or epigastric pain were excluded. Patients admitted twice during the study period were not re-included. The American Society of Health-System Pharmacists guidelines on SUP were used to assess the appropriateness of de novo PPI prescriptions.Results: Among 255 consecutive patients in the study, 138 (54%) received a prophylaxis with PPI, of which 86 (62%) were de novo PPI prescriptions. One-hundred twenty-nine patients (94%) received esomeprazole (according to the hospital drug policy). The most frequent dosage was 40 mg/day. Use of PPI for SUP was evaluated in 67 patients. Fifty-three patients (79%) had no risk factors for SUP. Twelve and 2 patients had one or two risk factors, respectively. At discharge, PPI prophylaxis was continued in 34% of patients with a de novo PPI prescription.Conclusion: This study highlights the overuse of PPIs in non-ICU patients and the inappropriate continuation of PPI prescriptions at discharge.Treatment
Resumo:
ABSTRACT The concept of soil physical quality (SPQ) is currently under discussion, and an agreement about which soil physical properties should be included in the SPQ characterization has not been reached. The objectives of this study were to evaluate the ability of SPQ indicators based on static and dynamic soil properties to assess the effects of two loosening treatments (chisel plowing to 0.20 m [ChT] and subsoiling to 0.35 m [DL]) on a soil under NT and to compare the performance of static- and dynamic-based SPQ indicators to define soil proper soil conditions for soybean yield. Soil sampling and field determinations were carried out after crop harvest. Soil water retention curve was determined using a tension table, and field infiltration was measured using a tension disc infiltrometer. Most dynamic SPQ indicators (field saturated hydraulic conductivity, K0, effective macroporosity, εma, total connectivity and macroporosity indexes [CwTP and Cwmac]) were affected by the studied treatments, and were greater for DL compared to NT and ChT (K0 values were 2.17, 2.55, and 4.37 cm h-1 for NT, ChT, and DL, respectively). However, static SPQ indicators (calculated from the water retention curve) were not capable of distinguishing effects among treatments. Crop yield was significantly lower for the DL treatment (NT: 2,400 kg ha-1; ChT: 2,358 kg ha-1; and DL: 2,105 kg ha1), in agreement with significantly higher values of the dynamic SPQ indicators, K0, εma, CwTP, and Cwmac, in this treatment. The results support the idea that SPQ indicators based on static properties are not capable of distinguishing tillage effects and predicting crop yield, whereas dynamic SPQ indicators are useful for distinguishing tillage effects and can explain differences in crop yield when used together with information on weather conditions. However, future studies, monitoring years with different weather conditions, would be useful for increasing knowledge on this topic.
Resumo:
The haemodynamic effects of the sympathetic nervous system (SNS) activations elicited by hypoglycaemia, acute alcohol administration, or insulin can be prevented by a pretreatment with dexamethasone in humans. This suggests a possible role of central corticotropin releasing hormone (GRIT) release. Mental stress activates the SNS, and decreases systemic vascular resistances though a beta-adrenergic-mediated vasodilation thought to involve vascular nitric oxide release. It also increases insulin-mediated glucose disposal, an effect presumably related to vasodilation. In order to evaluate whether activation of SNS by mental stress is glucocorticoid-sensitive, we monitored the haemodynamic and metabolic effects of mental stress during hyperinsulinaemia in healthy humans with and without a 2-day treatment with 8 mg day(-1) dexamethasone. Mental stress decreased systemic vascular resistances by 21.9% and increased insulin-mediated glucose disposal by 2 8.4% without dexamethasone pretreatment. After 2 days of dexamethasone treatment, whole body insulin-mediated glucose disposal was decreased by 40.8%. The haemodynainic effects of mental stress were however, not affected. Mental stress acutely increased insulin-mediated glucose disposal by 28.0%. This indicates that mental stress elicits a stimulation of SNS through dexamethasone-insensitive pathway, distinct of those activated by insulin, alcohol, or hyperglycaemia.
Resumo:
Abstract The production of various reactive oxidant species in excess of endogenous antioxidant defense mechanisms promotes the development of a state of oxidative stress, with significant biological consequences. In recent years, evidence has emerged that oxidative stress plays a crucial role in the development and perpetuation of inflammation, and thus contributes to the pathophysiology of a number of debilitating illnesses, such as cardiovascular diseases, diabetes, cancer, or neurodegenerative processes. Oxidants affect all stages of the inflammatory response, including the release by damaged tissues of molecules acting as endogenous danger signals, their sensing by innate immune receptors from the Toll-like (TLRs) and the NOD-like (NLRs) families, and the activation of signaling pathways initiating the adaptive cellular response to such signals. In this article, after summarizing the basic aspects of redox biology and inflammation, we review in detail the current knowledge on the fundamental connections between oxidative stress and inflammatory processes, with a special emphasis on the danger molecule high-mobility group box-1, the TLRs, the NLRP-3 receptor, and the inflammasome, as well as the transcription factor nuclear factor-κB.
Resumo:
To evaluate the clinical evolution of sacral stress fractures in relation to the scintigraphic pattern and the presence of additional pelvic fractures. METHODS--This was a retrospective study of 14 patients with sacral fractures. RESULTS--Six patients had additional pelvic fractures. Four bone scintigraphic patterns were found. The resolution of symptoms was longer in patients with associated pelvic fractures (30 weeks v three weeks). No relation was found between the bone scintigraphic pattern and the time of evolution. CONCLUSION--Associated pelvic fractures delay the resolution of symptoms in patients with sacral fractures, regardless of scintigraphic pattern.
Resumo:
Isolated hepatocytes incubated with [35S]-methionine were examined for the time-dependent accumulation of [35S]-glutathione (GSH) in cytosol and mitochondria, the latter confirmed by density gradient purification. In GSH-depleted and -repleted hepatocytes, the increase of specific activity of mitochondrial GSH lagged behind cytosol, reaching nearly the same specific activity by 1-2 h. However, in hepatocytes from ethanol-fed rats, the rate of increase of total GSH specific radioactivity in mitochondria was markedly suppressed. In in vivo steady-state experiments, the mass transport of GSH from cytosol to mitochondria and vice versa was 18 nmol/min per g liver, indicating that the half-life of mitochondrial GSH was approximately 18 min in controls. The fractional transport rate of GSH from cytosol to mitochondria, but not mitochondria to cytosol, was significantly reduced in the livers of ethanol-fed rats. Thus, ethanol-fed rats exhibit a decreased mitochondrial GSH pool size due to an impaired entry of cytosol GSH into mitochondria. Hepatocytes from ethanol-fed rats exhibited a greater susceptibility to the oxidant stress-induced cell death from tert-butylhydroperoxide. Incubation with glutathione monoethyl ester normalized the mitochondrial GSH and protected against the increased susceptibility to t-butylhydroperoxide, which was directly related to the lowered mitochondrial GSH pool size in ethanol-fed cells.
Resumo:
To evaluate the clinical evolution of sacral stress fractures in relation to the scintigraphic pattern and the presence of additional pelvic fractures. METHODS--This was a retrospective study of 14 patients with sacral fractures. RESULTS--Six patients had additional pelvic fractures. Four bone scintigraphic patterns were found. The resolution of symptoms was longer in patients with associated pelvic fractures (30 weeks v three weeks). No relation was found between the bone scintigraphic pattern and the time of evolution. CONCLUSION--Associated pelvic fractures delay the resolution of symptoms in patients with sacral fractures, regardless of scintigraphic pattern.
Resumo:
Unicellular organisms, such as the protozoan parasite Leishmania, can be stimulated to show some morphological and biochemical features characteristic of mammalian apoptosis. This study demonstrates that under a variety of stress conditions such as serum deprivation, heat shock and nitric oxide, cell death can be induced leading to genomic DNA fragmentation into oligonucleosomes. DNA fragmentation was observed, without induction, in the infectious stages of the parasite, and correlated with the presence of internucleosomal nuclease activity, visualisation of 45 to 59 kDa nucleases and detection of TUNEL-positive nuclei. DNA fragmentation was not dependent on active effector downstream caspases nor on the lysosomal cathepsin L-like enzymes CPA and CPB. These data are consistent with the presence of a caspase-independent cell death mechanism in Leishmania, induced by stress and differentiation that differs significantly from metazoa.
Resumo:
Glioblastoma multiforme (GBM) is the most malignant variant of human glial tumors. A prominent feature of this tumor is the occurrence of necrosis and vascular proliferation. The regulation of glial neovascularization is still poorly understood and the characterization of factors involved in this process is of major clinical interest. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine released by leukocytes and by a variety of cells outside of the immune system. Recent work has shown that MIF may function to regulate cellular differentiation and proliferation in normal and tumor-derived cell lines, and may also contribute to the neovascularization of tumors. Our immunohistological analysis of MIF distribution in GBM tissues revealed the strong MIF protein accumulation in close association with necrotic areas and in tumor cells surrounding blood vessels. In addition, MIF expression was frequently associated with the presence of the tumor-suppressor gene p53. To substantiate the concept that MIF might be involved in the regulation of angiogenesis in GBM, we analyzed the MIF gene and protein expression under hypoxic and hypoglycemic stress conditions in vitro. Northern blot analysis showed a clear increase of MIF mRNA after hypoxia and hypoglycemia. We could also demonstrate that the increase of MIF transcripts on hypoxic stress can be explained by a profound transcriptional activation of the MIF gene. In parallel to the increase of MIF transcripts, we observed a significant rise in extracellular MIF protein on angiogenic stimulation. The data of our preliminary study suggest that the up-regulation of MIF expression during hypoxic and hypoglycemic stress might play a critical role for the neovascularization of glial tumors.