934 resultados para YEARLING CALVES
Resumo:
This paper presents a study made in a field poorly explored in the Portuguese language – modality and its automatic tagging. Our main goal was to find a set of attributes for the creation of automatic tag- gers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored field, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntac- tic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three different sets of attributes – from trigger itself and the trigger’s path (from the parse tree) and context – the system creates a tagger for each verb achiev- ing (in almost every verb) an improvement in F1 when compared to the traditional bow approach.
Resumo:
This paper presents our approach of identifying the profile of an unknown user based on the activities of known users. The aim of author profiling task of PAN@CLEF 2016 is cross-genre identification of the gender and age of an unknown user. This means training the system using the behavior of different users from one social media platform and identifying the profile of other user on some different platform. Instead of using single classifier to build the system we used a combination of different classifiers, also known as stacking. This approach allowed us explore the strength of all the classifiers and minimize the bias or error enforced by a single classifier.
Resumo:
2016
Resumo:
Correlation between genetic parameters and factors such as backfat thickness (BFT), rib eye area (REA), and body weight (BW) were estimated for Canchim beef cattle raised in natural pastures of Brazil. Data from 1648 animals were analyzed using multi-trait (BFT, REA, and BW) animal models by the Bayesian approach. This model included the effects of contemporary group, age, and individual heterozygosity as covariates. In addition, direct additive genetic and random residual effects were also analyzed. Heritability estimated for BFT (0.16), REA (0.50), and BW (0.44) indicated their potential for genetic improvements and response to selection processes. Furthermore, genetic correlations between BW and the remaining traits were high (P > 0.50), suggesting that selection for BW could improve REA and BFT. On the other hand, genetic correlation between BFT and REA was low (P = 0.39 ± 0.17), and included considerable variations, suggesting that these traits can be jointly included as selection criteria without influencing each other. We found that REA and BFT responded to the selection processes, as measured by ultrasound. Therefore, selection for yearling weight results in changes in REA and BFT.