956 resultados para World Church of Gods Power
Resumo:
Book review: The paradox of German power. By Hans Kundnani. London: Hurst. 2014. 147pp. £17.90. isbn 978 1 84904 415 8.
Resumo:
A novel open-winding brushless doubly-fed generator (BDFG) system with two two-level bidirectional converters is proposed. This topology is equivalent to a three-level bidirectional converter connected to the typical BDFG, but solves the unbalanced-voltage-division problem of DC capacitor in the three-level converter, and has lower converter capacity, more flexible control mode, and better fault-tolerant ability. The direct power control (DPC) based on the twelve sections is adopted to implement the power tracking of the open-winding BDFG system, which is compared with the typical BDFG DPC system based on the six and twelve sections to verify the advantages of the proposed scheme.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.
Resumo:
Oscillation amplitudes are generally smaller within magnetically active regions like sunspots and plage when compared to their surroundings. Such magnetic features, when viewed in spatially resolved power maps, appear as regions of suppressed power due to reductions in the oscillation amplitudes. Employing high spatial- and temporal-resolution observations from the Dunn Solar Telescope (DST) in New Mexico, we study the power suppression in a region of evolving magnetic fields adjacent to a pore. By utilizing wavelet analysis, we study for the first time how the oscillatory properties in this region change as the magnetic field evolves with time. Image sequences taken in the blue continuum, G-band, Ca ii K, and Hα filters were used in this study. It is observed that the suppression found in the chromosphere occupies a relatively larger area, confirming previous findings. Also, the suppression is extended to structures directly connected to the magnetic region, and is found to get enhanced as the magnetic field strength increased with time. The dependence of the suppression on the magnetic field strength is greater at longer periods and higher formation heights. Furthermore, the dominant periodicity in the chromosphere was found to be anti-correlated with increases in the magnetic field strength.
Resumo:
Utilization of renewable energy sources and energy storage systems is increasing with fostering new policies on energy industries. However, the increase of distributed generation hinders the reliability of power systems. In order to stabilize them, a virtual power plant emerges as a novel power grid management system. The VPP has a role to make a participation of different distributed energy resources and energy storage systems. This paper defines core technology of the VPP which are demand response and ancillary service concerning about Korea, America and Europe cases. It also suggests application solutions of the VPP to V2G market for restructuring national power industries in Korea.
Resumo:
Studies have shown that large geographical spreading can reduce the wind power variability and smooth production. It is frequently assumed that storage and interconnection can manage wind power variability and are totally flexible. However, constraints do exist. In the future more and more electricity will be provided by renewable energy sources and more electricity interconnectors will be built between European Union (EU) countries, as outlines in many of the Projects of Common Interests. It is essential to understand the correlation of wind generation throughout Europe considering power system constraints. In this study the spatial and temporal correlation of wind power production across several countries is examined in order to understand how “the wind ‘travels’ across Europe”. Three years of historical hourly wind power generation from ten EU countries is analysed to investigate the geographic diversity and time scales influence on correlation of wind power variations. Results are then compared with two other studies and show similar general characteristics of correlation between EU country pairs to identify opportunities for storage optimisation, power system operations, and trading.
Resumo:
This manual contains a summary of acquisition policy and makes recommendations to implement law and policy.
Resumo:
We investigate the application of time-reversed electromagnetic wave propagation to transmit energy in a wireless power transmission system. “Time reversal” is a signal focusing method that exploits the time reversal invariance of the lossless wave equation to direct signals onto a single point inside a complex scattering environment. In this work, we explore the properties of time reversed microwave pulses in a low-loss ray-chaotic chamber. We measure the spatial profile of the collapsing wavefront around the target antenna, and demonstrate that time reversal can be used to transfer energy to a receiver in motion. We demonstrate how nonlinear elements can be controlled to selectively focus on one target out of a group. Finally, we discuss the design of a rectenna for use in a time reversal system. We explore the implication of these results, and how they may be applied in future technologies.
Resumo:
Bibliographical footnotes.
Resumo:
Soybean Stem Fly (SSF), Melanagromyza sojae (Zehntner), belongs to the family Agromyzidae and is highly polyphagous, attacking many plant species of the family Fabaceae, including soybean and other beans. SSF is regarded as one of the most important pests in soybean fields of Asia (e.g., China, India), North East Africa (e.g., Egypt), parts of Russia, and South East Asia. Despite reports of Agromyzidae flies infesting soybean fields in Rio Grande do Sul State (Brazil) in 1983 and 2009 and periodic interceptions of SSF since the 1940s by the USA quarantine authorities, SSF has not been officially reported to have successfully established in the North and South Americas. In South America, M. sojae was recently confirmed using morphology and its complete mitochondrial DNA (mtDNA) was characterized. In the present study, we surveyed the genetic diversity of M. sojae, collected directly from soybean host plants, using partial mtDNA cytochrome oxidase I (COI) gene, and provide evidence of multiple (>10) maternal lineages in SSF populations in South America, potentially representing multiple incursion events. However, a single incursion involving multiple-female founders could not be ruled out. We identified a haplotype that was common in the fields of two Brazilian states and the individuals collected from Australia in 2013. The implications of SSF incursions in southern Brazil are discussed in relation to the current soybean agricultural practices, highlighting an urgent need for better understanding of SSF population movements in the New World, which is necessary for developing effective management options for this significant soybean pest. © FUNPEC-RP.
Resumo:
Includes a Report of the Exerciese in the Salt Lake Assembly Hall.