984 resultados para Witsius, Herman, 1636-1708.
Integrating methods for developing sustainability indicators that can facilitate learning and action
Resumo:
Bossel's (2001) systems-based approach for deriving comprehensive indicator sets provides one of the most holistic frameworks for developing sustainability indicators. It ensures that indicators cover all important aspects of system viability, performance, and sustainability, and recognizes that a system cannot be assessed in isolation from the systems upon which it depends and which in turn depend upon it. In this reply, we show how Bossel's approach is part of a wider convergence toward integrating participatory and reductionist approaches to measure progress toward sustainable development. However, we also show that further integration of these approaches may be able to improve the accuracy and reliability of indicators to better stimulate community learning and action. Only through active community involvement can indicators facilitate progress toward sustainable development goals. To engage communities effectively in the application of indicators, these communities must be actively involved in developing, and even in proposing, indicators. The accuracy, reliability, and sensitivity of the indicators derived from local communities can be ensured through an iterative process of empirical and community evaluation. Communities are unlikely to invest in measuring sustainability indicators unless monitoring provides immediate and clear benefits. However, in the context of goals, targets, and/or baselines, sustainability indicators can more effectively contribute to a process of development that matches local priorities and engages the interests of local people.
Resumo:
High-resolution vibration-rotation spectra of monofluoroacetylene are reported for many bands in the region 1700 to 7500 cm−1. The spectra were observed on Nicolet 7199 and Bruker IFS 120 Fourier spectrometers, with resolutions of about 0.06 and 0.003 cm−1, respectively. About 130 bands have been observed in this region, of which about 80 have been rotationally analyzed. The assignment of vibrational labels to the higher energy levels is complicated by the effects of strong Fermi resonances, and many weak localized rotational resonances are observed.
Resumo:
Formulas are obtained for the intensity asymmetry (Herman-Wallis) factors in the ν3 and ν4 fundamentals of methane due to the ζ34 Coriolis interaction. The results are also applicable to the ν3 and ν4 bands of SF6.
Resumo:
This paper presents an efficient construction algorithm for obtaining sparse kernel density estimates based on a regression approach that directly optimizes model generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. A local regularization method is incorporated naturally into the density construction process to further enforce sparsity. An additional advantage of the proposed algorithm is that it is fully automatic and the user is not required to specify any criterion to terminate the density construction procedure. This is in contrast to an existing state-of-art kernel density estimation method using the support vector machine (SVM), where the user is required to specify some critical algorithm parameter. Several examples are included to demonstrate the ability of the proposed algorithm to effectively construct a very sparse kernel density estimate with comparable accuracy to that of the full sample optimized Parzen window density estimate. Our experimental results also demonstrate that the proposed algorithm compares favorably with the SVM method, in terms of both test accuracy and sparsity, for constructing kernel density estimates.
Resumo:
The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et
Resumo:
The scope of the reducing emissions from deforestation and forest degradation (REDD) mechanism has broadened REDD+ to accommodate different country interests such as natural forests, protected areas, as well as forests under community-based management. In Tanzania the REDD+ mechanism is still under development and pilot projects are at an early stage. In this paper, we seek to understand how local priorities and needs could be met in REDD+ implementation and how these expectations match with global mitigation benefits. We examine the local priorities and needs in the use of land and forest resources in the Angai Villages Land Forest Reserve (AVLFR) in the Liwale District of Lindi Region in Tanzania. Primary data was collected in two villages, Mihumo and Lilombe, using semistructured key informant interviews and participatory rural appraisal methods. In addition, the key informant interviews were conducted with other village, district, and national level actors, as well as international donors. Findings show that in the two communities REDD+ is seen as something new and is generating new expectations among communities. However, the Angai villagers highlight three key priorities that have yet to be integrated into the design of REDD+: water scarcity, rural development, and food security. At the local level improved forest governance and sustainable management of forest resources have been identified as one way to achieve livelihood diversification. Although the national goals of REDD+ include poverty reduction, these goals are not necessarily conducive to the goals of these communities. There exist both structural and cultural limits to the ability of the Angai villages to implement these goals and to improve forestry governance. Given the vulnerability to current and future climate variability and change it will be important to consider how the AVLFR will be managed and for whose benefit?
Resumo:
Global climate and weather models tend to produce rainfall that is too light and too regular over the tropical ocean. This is likely because of convective parametrizations, but the problem is not well understood. Here, distributions of precipitation rates are analyzed for high-resolution UK Met Office Unified Model simulations of a 10 day case study over a large tropical domain (∼20°S–20°N and 42°E–180°E). Simulations with 12 km grid length and parametrized convection have too many occurrences of light rain and too few of heavier rain when interpolated onto a 1° grid and compared with Tropical Rainfall Measuring Mission (TRMM) data. In fact, this version of the model appears to have a preferred scale of rainfall around 0.4 mm h−1 (10 mm day−1), unlike observations of tropical rainfall. On the other hand, 4 km grid length simulations with explicit convection produce distributions much more similar to TRMM observations. The apparent preferred scale at lighter rain rates seems to be a feature of the convective parametrization rather than the coarse resolution, as demonstrated by results from 12 km simulations with explicit convection and 40 km simulations with parametrized convection. In fact, coarser resolution models with explicit convection tend to have even more heavy rain than observed. Implications for models using convective parametrizations, including interactions of heating and moistening profiles with larger scales, are discussed. One important implication is that the explicit convection 4 km model has temperature and moisture tendencies that favour transitions in the convective regime. Also, the 12 km parametrized convection model produces a more stable temperature profile at its extreme high-precipitation range, which may reduce the chance of very heavy rainfall. Further study is needed to determine whether unrealistic precipitation distributions are due to some fundamental limitation of convective parametrizations or whether parametrizations can be improved, in order to better simulate these distributions.