982 resultados para Wide-angle seismic modeling
Resumo:
The present paper makes progress in explaining the role of capital for inflation and output dynamics. We followWoodford (2003, Ch. 5) in assuming Calvo pricing combined with a convex capital adjustment cost at the firm level. Our main result is that capital accumulation affects inflation dynamics primarily through its impact on the marginal cost. This mechanism is much simpler than the one implied by the analysis in Woodford's text. The reason is that his analysis suffers from a conceptual mistake, as we show. The latter obscures the economic mechanism through which capital affects inflation and output dynamics in the Calvo model, as discussed in Woodford (2004).
Resumo:
The goal of this paper is to estimate time-varying covariance matrices.Since the covariance matrix of financial returns is known to changethrough time and is an essential ingredient in risk measurement, portfolioselection, and tests of asset pricing models, this is a very importantproblem in practice. Our model of choice is the Diagonal-Vech version ofthe Multivariate GARCH(1,1) model. The problem is that the estimation ofthe general Diagonal-Vech model model is numerically infeasible indimensions higher than 5. The common approach is to estimate more restrictive models which are tractable but may not conform to the data. Our contributionis to propose an alternative estimation method that is numerically feasible,produces positive semi-definite conditional covariance matrices, and doesnot impose unrealistic a priori restrictions. We provide an empiricalapplication in the context of international stock markets, comparing thenew estimator to a number of existing ones.
Resumo:
We describe some of the main features of the recent vintage macroeconomic models used for monetary policy evaluation. We point to some of the key differences with respect to the earlier generation ofmacro models, and highlight the insights for policy that these new frameworks have to offer. Our discussion emphasizes two key aspects of the new models: the significant role of expectations of future policy actions in the monetary transmission mechanism, and the importance for the central bank of tracking of the flexible price equilibrium values of the natural levels of output and the real interest rate. We argue that both features have important implications for the conduct of monetary policy.
Resumo:
Nowadays, genome-wide association studies (GWAS) and genomic selection (GS) methods which use genome-wide marker data for phenotype prediction are of much potential interest in plant breeding. However, to our knowledge, no studies have been performed yet on the predictive ability of these methods for structured traits when using training populations with high levels of genetic diversity. Such an example of a highly heterozygous, perennial species is grapevine. The present study compares the accuracy of models based on GWAS or GS alone, or in combination, for predicting simple or complex traits, linked or not with population structure. In order to explore the relevance of these methods in this context, we performed simulations using approx 90,000 SNPs on a population of 3,000 individuals structured into three groups and corresponding to published diversity grapevine data. To estimate the parameters of the prediction models, we defined four training populations of 1,000 individuals, corresponding to these three groups and a core collection. Finally, to estimate the accuracy of the models, we also simulated four breeding populations of 200 individuals. Although prediction accuracy was low when breeding populations were too distant from the training populations, high accuracy levels were obtained using the sole core-collection as training population. The highest prediction accuracy was obtained (up to 0.9) using the combined GWAS-GS model. We thus recommend using the combined prediction model and a core-collection as training population for grapevine breeding or for other important economic crops with the same characteristics.
Resumo:
BACKGROUND: Coronary artery calcification (CAC) detected by computed tomography is a noninvasive measure of coronary atherosclerosis, which underlies most cases of myocardial infarction (MI). We sought to identify common genetic variants associated with CAC and further investigate their associations with MI. METHODS AND RESULTS: Computed tomography was used to assess quantity of CAC. A meta-analysis of genome-wide association studies for CAC was performed in 9961 men and women from 5 independent community-based cohorts, with replication in 3 additional independent cohorts (n=6032). We examined the top single-nucleotide polymorphisms (SNPs) associated with CAC quantity for association with MI in multiple large genome-wide association studies of MI. Genome-wide significant associations with CAC for SNPs on chromosome 9p21 near CDKN2A and CDKN2B (top SNP: rs1333049; P=7.58×10(-19)) and 6p24 (top SNP: rs9349379, within the PHACTR1 gene; P=2.65×10(-11)) replicated for CAC and for MI. Additionally, there is evidence for concordance of SNP associations with both CAC and MI at a number of other loci, including 3q22 (MRAS gene), 13q34 (COL4A1/COL4A2 genes), and 1p13 (SORT1 gene). CONCLUSIONS: SNPs in the 9p21 and PHACTR1 gene loci were strongly associated with CAC and MI, and there are suggestive associations with both CAC and MI of SNPs in additional loci. Multiple genetic loci are associated with development of both underlying coronary atherosclerosis and clinical events.
Resumo:
Protein-protein interactions encode the wiring diagram of cellular signaling pathways and their deregulations underlie a variety of diseases, such as cancer. Inhibiting protein-protein interactions with peptide derivatives is a promising way to develop new biological and therapeutic tools. Here, we develop a general framework to computationally handle hundreds of non-natural amino acid sidechains and predict the effect of inserting them into peptides or proteins. We first generate all structural files (pdb and mol2), as well as parameters and topologies for standard molecular mechanics software (CHARMM and Gromacs). Accurate predictions of rotamer probabilities are provided using a novel combined knowledge and physics based strategy. Non-natural sidechains are useful to increase peptide ligand binding affinity. Our results obtained on non-natural mutants of a BCL9 peptide targeting beta-catenin show very good correlation between predicted and experimental binding free-energies, indicating that such predictions can be used to design new inhibitors. Data generated in this work, as well as PyMOL and UCSF Chimera plug-ins for user-friendly visualization of non-natural sidechains, are all available at http://www.swisssidechain.ch. Our results enable researchers to rapidly and efficiently work with hundreds of non-natural sidechains.
Resumo:
Large, rare copy number variants (CNVs) have been implicated in a variety of psychiatric disorders, but the role of CNVs in recurrent depression is unclear. We performed a genome-wide analysis of large, rare CNVs in 3106 cases of recurrent depression, 459 controls screened for lifetime-absence of psychiatric disorder and 5619 unscreened controls from phase 2 of the Wellcome Trust Case Control Consortium (WTCCC2). We compared the frequency of cases with CNVs against the frequency observed in each control group, analysing CNVs over the whole genome, genic, intergenic, intronic and exonic regions. We found that deletion CNVs were associated with recurrent depression, whereas duplications were not. The effect was significant when comparing cases with WTCCC2 controls (P=7.7 × 10(-6), odds ratio (OR) =1.25 (95% confidence interval (CI) 1.13-1.37)) and to screened controls (P=5.6 × 10(-4), OR=1.52 (95% CI 1.20-1.93). Further analysis showed that CNVs deleting protein coding regions were largely responsible for the association. Within an analysis of regions previously implicated in schizophrenia, we found an overall enrichment of CNVs in our cases when compared with screened controls (P=0.019). We observe an ordered increase of samples with deletion CNVs, with the lowest proportion seen in screened controls, the next highest in unscreened controls and the highest in cases. This may suggest that the absence of deletion CNVs, especially in genes, is associated with resilience to recurrent depression.
Resumo:
A utilização da Web para a divulgação de produtos e negócios através da Internet já não é novidade, novidade é a Web3D2, uma nova tecnologia concebido para lhe proporcionar inúmeros momentos de interactividade e dinamismo. Pretende-se assim fazer uma pequena abordagem dos objectos 3D na WWW, passando uma visão sobre a Web, identificando algumas as funcionalidades e serviços, a visualização de objecto 3D na Web, os navegadores comuns e os visualizadores que permitem visualizar conteúdos tanto 2D como 3D. Pretende-se desta forma partilhar e dar a conhecer os trabalhos e os avanços conseguidos na criação da das tecnologias Web3D, iniciando com uma contextualização da Web3D, fazendo uma passagem pelos mundos virtuais na Internet criados em Virtual Reality Modeling Language, realçando as dificuldades dessa linguagem na altura e os novos incentivos que deram origem a outras especificação como a X3D. Ainda são identificadas algumas plataformas e ferramentas de tecnologia Web3D, exemplos de algumas áreas onde se aplicam e a perspectiva para o futuro da Web3D centrada na visão do Web3D consortium.
Resumo:
Recent years have seen a surge in mathematical modeling of the various aspects of neuron-astrocyte interactions, and the field of brain energy metabolism is no exception in that regard. Despite the advent of biophysical models in the field, the long-lasting debate on the role of lactate in brain energy metabolism is still unresolved. Quite the contrary, it has been ported to the world of differential equations. Here, we summarize the present state of this discussion from the modeler's point of view and bring some crucial points to the attention of the non-mathematically proficient reader.
Resumo:
In this paper, an extension of the multi-scale finite-volume (MSFV) method is devised, which allows to Simulate flow and transport in reservoirs with complex well configurations. The new framework fits nicely into the data Structure of the original MSFV method,and has the important property that large patches covering the whole well are not required. For each well. an additional degree of freedom is introduced. While the treatment of pressure-constraint wells is trivial (the well-bore reference pressure is explicitly specified), additional equations have to be solved to obtain the unknown well-bore pressure of rate-constraint wells. Numerical Simulations of test cases with multiple complex wells demonstrate the ability of the new algorithm to capture the interference between the various wells and the reservoir accurately. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Carbon and oxygen isotope studies of the host and gangue carbonates of Mississippi Valley-type zinc-lead deposits in the San Vicente District hosted in the Upper Triassic to Lower Jurassic dolostones of the Pucara basin (central Peru) were used to constrain models of the ore formation. A mixing model between an incoming hot saline slightly acidic radiogenic (Pb, Sr) fluid and the native formation water explains the overall isotopic variation (delta(13)C = - 11.5 to + 2.5 parts per thousand relative to PDB and delta(18)O = + 18.0 to + 24.3 parts per thousand relative to SMOW) of the carbonate generations. The dolomites formed during the main ore stage show a narrower range (delta(13)C = - 0.1 to + 1.7 parts per thousand and delta(18)O = + 18.7 to + 23.4 parts per thousand) which is explained by exchange between the mineralizing fluids and the host carbonates combined with changes in temperature and pressure. This model of fluid-rock interaction explains the pervasive alteration of the host dolomite I and precipitation of sphalerite I. The open-space filling hydrothermal white sparry dolomite and the coexisting sphalerite II formed by prolonged fluid-host dolomite interaction and limited CO2 degassing. Late void-filling dolomite III (or calcite) and the associated sphalerite III formed as the consequence of CO2 degassing and concomitant pH increase of a slightly acidic ore fluid. Widespread brecciation is associated to CO2 outgassing. Consequently, pressure variability plays a major role in the ore precipitation during the late hydrothermal events in San Vicente. The presence of native sulfur associated with extremely carbon-light calcites replacing evaporitic sulfates (e.g., delta(13)C = - 11.5 parts per thousand), altered native organic matter and heavier hydrothermal bitumen (from - 27.0 to - 23.0 parts per thousand delta(13)C) points to thermochemical reduction of sulfate and/or thiosulfate. The delta(13)C- and delta(18)O-values of the altered host dolostone and hydrothermal carbonates, and the carbon isotope composition of the associated organic matter show a strong regional homogeneity. These results coupled with the strong mineralogical and petrographic similarities of the different MVT occurrences perhaps reflects the fact that the mineralizing processes were similar in the whole San Vicente belt, suggesting the existence of a common regional mineralizing hydrothermal system with interconnected plumbing.
Resumo:
A high-resolution three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings has been developed. Its main characteristics include navigation and shot-triggering software that fires the seismic source at regular distance intervals (max. error of 0.25 m) with real-time control on navigation using differential GPS (Global Positioning System). Receiver positions are accurately calculated (error < 0.20 m) with the aid of GPS antennas attached to the end of each of three 24-channel streamers. Two telescopic booms hold the streamers at a distance of 7.5 m from each other. With a receiver spacing of 2.5 m, the bin dimension is 1.25 m in inline and 3.75 m in crossline direction. To test the system, we conducted a 3D survey of about 1 km(2) in Lake Geneva, Switzerland, over a complex fault zone. A 5-m shot spacing resulted in a nominal fold of 6. A double-chamber bubble-cancelling 15/15 in(3) air gun (40-650 Hz) operated at 80 bars and 1 m depth gave a signal penetration of 300 m below water bottom and a best vertical resolution of 1.1 m. Processing followed a conventional scheme, but had to be adapted to the high sampling rates, and our unconventional navigation data needed conversion to industry standards. The high-quality data enabled us to construct maps of seismic horizons and fault surfaces in three dimensions. The system proves to be well adapted to investigate complex structures by providing non-aliased images of reflectors with dips up to 30 degrees.
Resumo:
The effects of patch size and isolation on metapopulation dynamics have received wide empirical support and theoretical formalization. By contrast, the effects of patch quality seem largely underinvestigated, partly due to technical difficulties in properly assessing quality. Here we combine habitat-quality modeling with four years of demographic monitoring in a metapopulation of greater white-toothed shrews (Crocidura russula) to investigate the role of patch quality on metapopulation processes. Together, local patch quality and connectivity significantly enhanced local population sizes and occupancy rates (R2 = 14% and 19%, respectively). Accounting for the quality of patches connected to the focal one and acting as potential sources improved slightly the model explanatory power for local population sizes, pointing to significant source-sink dynamics. Local habitat quality, in interaction with connectivity, also increased colonization rate (R2 = 28%), suggesting the ability of immigrants to target high-quality patches. Overall, patterns were best explained when assuming a mean dispersal distance of 800 m, a realistic value for the species under study. Our results thus provide evidence that patch quality, in interaction with connectivity, may affect major demographic processes.
Identification of optimal structural connectivity using functional connectivity and neural modeling.
Resumo:
The complex network dynamics that arise from the interaction of the brain's structural and functional architectures give rise to mental function. Theoretical models demonstrate that the structure-function relation is maximal when the global network dynamics operate at a critical point of state transition. In the present work, we used a dynamic mean-field neural model to fit empirical structural connectivity (SC) and functional connectivity (FC) data acquired in humans and macaques and developed a new iterative-fitting algorithm to optimize the SC matrix based on the FC matrix. A dramatic improvement of the fitting of the matrices was obtained with the addition of a small number of anatomical links, particularly cross-hemispheric connections, and reweighting of existing connections. We suggest that the notion of a critical working point, where the structure-function interplay is maximal, may provide a new way to link behavior and cognition, and a new perspective to understand recovery of function in clinical conditions.