1000 resultados para West Antarctic Ice Sheet


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable carbon and oxygen isotopes from benthic and planktic foraminifers, planktic foraminifer assemblages and ice rafted debris from the North Atlantic Site U1314 (Integrated Ocean Drilling Program Expedition 306) were examined to investigate orbital and millennial-scale climate variability in the North Atlantic and its impact on global circulation focusing on the development of glacial periods during the mid-Pleistocene (ca 800-400 ka). Glacial initiations were characterized by a rapid cooling (6-10 °C in less than 7 kyr) in the mean annual sea surface temperature (SST), increasing benthic d18O values and high benthic d13C values. The continuous increase in benthic d18O suggests a continuous ice sheet growth whereas the positive benthic d13C values indicate that the flow of the Iceland Scotland Overflow water (ISOW) was vigorous. Strong deep water formation in the Norwegian Greenland Sea promoted a high transfer of freshwater from the ocean to the continents. However, low SSTs at Site U1314 suggest a subpolar gyre cooling and freshening that may have reduced deep water formation in the Labrador Sea during glacial initiations. Once the 3.5 per mil threshold in the benthic d18O record was exceeded, ice rafting started and ice sheet growth was punctuated by millennial-scale waning events which returned to the ocean part of the freshwater accumulated on the continents. Ice-rafting events were associated with a rapid reduction in the ISOW (benthic d13C values dropped 0.5-1?) and followed by millennial-scale warmings. The first two millennial-scale warm intervals of each glacial period reached interglacial temperatures and were particularly abrupt (6-10 °C in ~3 kyr). Subsequent millennial-scale warm events were cooler probably because the AMOC was rather reduced as suggested by the low benthic d13C values. These two abrupt warming events that occurred at early glacial periods were also observed in the Antarctic temperature and CO2 records, suggesting a close correlation between both Hemispheres. The comparison of the sea surface proxies with the benthic d18O record (as the Southern sign) indicates the presence of a millennial-scale seesaw pattern similar to that seen during the Last Glacial period.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO2 concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill) by conducting a CO2 perturbation experiment at ambient and elevated atmospheric CO2 levels in January 2011 along the West Antarctic Peninsula (WAP). Under elevated CO2 conditions (~672 ppm), ingestion rates of krill averaged 78 µg C/individual/d and were 3.5 times higher than krill ingestion rates at ambient, present day CO2 concentrations. Additionally, rates of ammonium, phosphate, and dissolved organic carbon (DOC) excretion by krill were 1.5, 1.5, and 3.0 times higher, respectively, in the high CO2 treatment than at ambient CO2 concentrations. Excretion of urea, however, was ~17% lower in the high CO2 treatment, suggesting differences in catabolic processes of krill between treatments. Activities of key metabolic enzymes, malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), were consistently higher in the high CO2 treatment. The observed shifts in metabolism are consistent with increased physiological costs associated with regulating internal acid-base equilibria. This represents an additional stress that may hamper growth and reproduction, which would negatively impact an already declining krill population along the WAP.