937 resultados para Water Quality Management
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper aims to study the ecological system of the Pardo River, at the source and lower-order passages, which are in the Botucatu area, São Paulo State, Brazil. This study was carried out to determine water quality with some chemical-physical indicators, coliforms, and chemical species of samples taken monthly, 1995/02-1996/01, from eight sampling stations sited along the Pardo River. The results in the river monitoring are discussed based on annual averages, analysis of variance, and compared to Tukey's Studentized Range-HSD, and principal component analysis (PCA) was applied to normalize data to assess association between variables. We can conclude that the variables used are very efficient for identifying and that the dry season shows the worst water quality. These were caused by organic matter, nutrients (originate) from anthropogenic sources (spatial sources) and mainly municipal wastewater, affecting the quality and hydrochemistry of the river water, which have been differentiated and assigned to polluting sources. Meanwhile, the degree of degradation of the Pardo River is low (sewage treatment carried out by the city of Pardinho is efficient), leaving the water of the river suitable for use by the population of Botucatu, after conventional treatment (Conama, Resolucao No. 20, CONAMA, Brazilia DF, 09-23, 1986-the water of the Pardo river is classified as level 03). (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This investigation reports the results of tests performed in a laboratory with solid waste samples from an area belonging to Sibelco Mineracao Ltd., which is located around Analandia municipality, nearly in the center of São Paulo State, Brazil. Dissolution and leaching essays were realized under different experimental conditions in four samples collected from the mining front and decantation pool, with the aim of evaluating the possibility of release of several constituents to the liquid phase.
Resumo:
The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil - Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s-1 has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP.
Resumo:
Channel catfish ponds are treated with salt (sodium chloride) to increase chloride concentration and prevent nitrite toxicity in fish. A survey indicated that most farmers try to maintain chloride concentration of 50 to 100 mg/L in ponds by annual salt applications. Averages and standard deviations for selected water quality variables in salt-treated ponds were as follows: chloride, 87.2 ± 37.5 mg/L; total dissolved solids (TDS), 336 ± 96 mg/L; specific conductance, 512 ± 164 μmhos/cm. Maximum values were 189 mg/L for chloride, 481 mg/L for TDS, and 825 μmhos/cm for specific conductance. Good correlations between specific conductance values and both chloride and TDS concentrations suggest that specific conductance can be a rapid method for estimating concentrations of these two variables in surface water. The maximum limit for chloride concentration in Alabama streams allowed by the Alabama Department of Environmental Management is 230 mg/L. The usual recommended upper limit of TDS for protection of aquatic life in freshwater streams is 1,000 mg/L. Based on the observed relationship between TDS concentration and specific conductance in Alabama catfish ponds, 1,000 mg/L TDS corresponds to 1,733 μmhos/cm specific conductance. It is unlikely that effluents from salt-treated catfish ponds would violate the in-stream chloride standard of 230 mg/L or harm aquatic life in streams. Nevertheless, chloride concentrations in ponds should be measured before salt application as a safe guard against excessive salt application and chloride concentrations above the in-stream chloride standard.
Resumo:
Male juveniles of Nile tilapia, Oreochromis niloticus, were stocked in 12, 300-m 2 ponds at a density of 1.7 fish/m 2 to evaluate the effects of different food management methods (natural foods and diets in pellet, floating or minced form) on fish production and carcass characteristics. Water quality variables monitored during the period were within acceptable levels for the species. Total fish production was significantly different (P < 0.05) and the highest values were obtained with diets in pellet (5,997 kg/ha) and floating (5,441 kg/ha) form. The fish fed diets had higher contents of body fat (1.57 to 1.98%) and visceral fat (12.64 to 25.04%) than fish fed natural food, which had levels between 0.17 and 0%, respectively. Natural food treatment yielded lower fish production and fish with lower body fat, while treatments that yielded higher fish production (rations) higher percentage of visceral fat. © 2004 by The Haworth Press, Inc. All rights reserved.
Resumo:
The computational program called GIS_EM (Geographic Information System for Environmental Monitoring), a software devised to manage geographic information for monitoring soil, surface, and ground water, developed for use in the Health, Safety, and Environment Division of Paulinia Refinery is presented. This program enables registering and management of alphanumeric information pertaining to specific themes such as drilling performed for sample collection and for installation of monitoring wells, geophysical and other tests, results of chemical analyses of soil, surface, and groundwater, as well as reference values providing orientation for soil and water quality, such as EPA, Dutch List, etc. Management of such themes is performed by means of alphanumeric search tools, with specific filters and, in the case of spatial search, through the selection of spatial elements (themes) in map view. Documents existing in digital form, such as reports, photos, maps, may be registered and managed in the network environment. As the system centralizes information generated upon environmental investigations, it expedites access to and search of documents produced and stored in the network environment, minimizing search time and the need to file printed documents. This is an abstract of a paper presented at the AIChE Annual Meeting and Fall Showcase (Cincinnati, OH 10/30/2005-11/4/2005).