992 resultados para Visual Cortex
Resumo:
AIMS: Previous neuroimaging reports described morphological and functional abnormalities in anterior cingulate cortex (ACC) in schizophrenia and mood disorders. In earlier neuropathological studies, microvascular changes that could affect brain perfusion in these disorders have rarely been studied. Here, we analysed morphological parameters of capillaries in this area in elderly cases affected by these psychiatric disorders. METHODS: We analysed microvessel diameters in the dorsal and subgenual parts of the ACC in eight patients with schizophrenia, 10 patients with sporadic bipolar disorder, eight patients with sporadic major depression, and seven age- and gender-matched control cases on sections stained with modified Gallyas silver impregnation using a stereological counting approach. All individuals were drug-naïve or had received psychotropic medication for less than 6 months, and had no history of substance abuse. Statistical analysis included Kruskal-Wallis group comparisons with Bonferroni correction as well as multivariate regression models. RESULTS: Mean capillary diameter was significantly decreased in the dorsal and subgenual parts of areas 24 in bipolar and unipolar depression cases, both in layers III and V, whereas schizophrenia patients were comparable with controls. These differences persisted when controlling for age, local neuronal densities, and cortical thickness. In addition, cortical thickness was significantly smaller in both layers in schizophrenia patients. CONCLUSIONS: Our findings indicate that capillary diameters in bipolar and unipolar depression but not in schizophrenia are reduced in ACC. The significance of these findings is discussed in the light of the cytoarchitecture, brain metabolism and perfusion changes observed in ACC in mood disorders.
Resumo:
Short-TE MRS has been proposed recently as a method for the in vivo detection and quantification of γ-aminobutyric acid (GABA) in the human brain at 3 T. In this study, we investigated the accuracy and reproducibility of short-TE MRS measurements of GABA at 3 T using both simulations and experiments. LCModel analysis was performed on a large number of simulated spectra with known metabolite input concentrations. Simulated spectra were generated using a range of spectral linewidths and signal-to-noise ratios to investigate the effect of varying experimental conditions, and analyses were performed using two different baseline models to investigate the effect of an inaccurate baseline model on GABA quantification. The results of these analyses indicated that, under experimental conditions corresponding to those typically observed in the occipital cortex, GABA concentration estimates are reproducible (mean reproducibility error, <20%), even when an incorrect baseline model is used. However, simulations indicate that the accuracy of GABA concentration estimates depends strongly on the experimental conditions (linewidth and signal-to-noise ratio). In addition to simulations, in vivo GABA measurements were performed using both spectral editing and short-TE MRS in the occipital cortex of 14 healthy volunteers. Short-TE MRS measurements of GABA exhibited a significant positive correlation with edited GABA measurements (R = 0.58, p < 0.05), suggesting that short-TE measurements of GABA correspond well with measurements made using spectral editing techniques. Finally, within-session reproducibility was assessed in the same 14 subjects using four consecutive short-TE GABA measurements in the occipital cortex. Across all subjects, the average coefficient of variation of these four GABA measurements was 8.7 ± 4.9%. This study demonstrates that, under some experimental conditions, short-TE MRS can be employed for the reproducible detection of GABA at 3 T, but that the technique should be used with caution, as the results are dependent on the experimental conditions. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Glial fibrillary acidic protein, GFAP, is a major intermediate filament protein of glial cells and major cytoskeletal structure in astrocytes. The entorhinal cortex has a key role in memory function and is one of the first brain areas to reveal hallmark structures of Alzheimer's disease and therefore provides an ideal tissue to investigate incipient neurodegenerative changes. Here we have analyzed age- and disease-related occurrence and composition of GFAP in the human entorhinal cortex by using one- and two-dimensional electrophoresis, Western blots and immunocytochemistry combined with confocal microscopy. A novel monoclonal antibody, GF-02, was characterized that mainly reacted with intact GFAP molecules and indicated that more acidic and soluble GFAP forms were also more susceptible to degradation. GFAP and vimentin increased with aging and in Alzheimer's disease (AD). Two-dimensional electrophoresis and Western blots revealed a complex GFAP pattern, both in aging and AD with different modification and degradation forms. Immunohistochemistry indicated that reactive astrocytes mainly accumulated in relation to neurofibrillary tangles and senile plaques in deeper entorhinal cortex layers. GFAP may be used as an additional but not exclusive diagnostic tool in the evaluation of neurodegenerative diseases because its levels change with age and respond to senile plaque and tangle formation.
Resumo:
To date, only a couple of functional MR spectroscopy (fMRS) studies were conducted in rats. Due to the low temporal resolution of (1)H MRS techniques, prolonged stimulation paradigms are necessary for investigating the metabolic outcome in the rat brain during functional challenge. However, sustained activation of cortical areas is usually difficult to obtain due to neural adaptation. Anesthesia, habituation, high variability of the basal state metabolite concentrations as well as low concentrations of the metabolites of interest such as lactate (Lac), glucose (Glc) or γ-aminobutyric acid (GABA) and small expected changes of metabolite concentrations need to be addressed. In the present study, the rat barrel cortex was reliably and reproducibly activated through sustained trigeminal nerve (TGN) stimulation. In addition, TGN stimulation induced significant positive changes in lactate (+1.01μmol/g, p<0.008) and glutamate (+0.92μmol/g, p<0.02) and significant negative aspartate changes (-0.63μmol/g, p<0.004) using functional (1)H MRS at 9.4T in agreement with previous changes observed in human fMRS studies. Finally, for the first time, the dynamics of lactate, glucose, aspartate and glutamate concentrations during sustained somatosensory activation in rats using fMRS were assessed. These results allow demonstrating the feasibility of fMRS measurements during prolonged barrel cortex activation in rats.
Resumo:
A 29-year-old pregnant woman noted acute visual loss following emergent Caesarean section complicated by excessive uterine bleeding. Postoperative visual acuity was count fingers in both eyes. Funduscopic changes were consistent with a diagnosis of anaemia-associated ischaemic optic neuropathy and retinopathy. One month later, because of persistent anaemia and poor visual recovery, blood transfusion was given. Following transfusion, the patient's vision improved over the next 6 months. In an otherwise healthy patient, visual loss associated with postoperative blood loss may still be partially reversible with correction of the anaemia, even after a delayed period of time.
Resumo:
The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.
Resumo:
The neurofilament (NF) proteins (NF-H, NF-M, and NF-L for high, medium, and low molecular weights) play a crucial role in the organization of neuronal shape and function. In a preliminary study, the abundance of total NF-L was shown to be decreased in brains of opioid addicts. Because of the potential relevance of NF abnormalities in opioid addiction, we quantitated nonphosphorylated and phosphorylated NF in postmortem brains from 12 well-defined opioid abusers who had died of an opiate overdose (heroin or methadone). Levels of NF were assessed by immunoblotting techniques using phospho-independent and phospho-dependent antibodies, and the relative (% changes in immunoreactivity) and absolute (changes in ng NF/microg total protein) amounts of NF were calculated. Decreased levels of nonphosphorylated NF-H (42-32%), NF-M (14-9%) and NF-L (30-29%) were found in the prefrontal cortex of opioid addicts compared with sex, age, and postmortem delay-matched controls. In contrast, increased levels of phosphorylated NF-H (58-41%) and NF-M (56-28%) were found in the same brains of opioid addicts. The ratio of phosphorylated to nonphosphorylated NF-H in opioid addicts (3.4) was greater than that in control subjects (1.6). In the same brains of opioid addicts, the levels of protein phosphatase of the type 2A were found unchanged, which indicated that the hyperphosphorylation of NF-H is not the result of a reduced dephosphorylation process. The immunodensities of GFAP (the specific glial cytoskeletol protein), alpha-internexin (a neuronal filament related to NF-L) and synaptophysin (a synapse-specific protein) were found unchanged, suggesting a lack of gross changes in glial reaction, other intermediate filaments of the neuronal cytoskeletol, and synaptic density in the prefrontal cortex of opioid addicts. These marked reductions in total NF proteins and the aberrant hyperphosphorylation of NF-H in brains of opioid addicts may play a significant role in the cellular mechanisms of opioid addiction.
Resumo:
Age related macular degeneration (AMD) is an ocular disease with high prevalence among elderly persons. Two different forms exist: dry AMD, usually slowly progressive, and neovascular AMD (wet form) more aggressive. Photodynamic therapy is used to treat the wet form and anti VEGF treatments recently became available and offer a real change in the prognostic of wet AMD. Two products are registered and used in Switzerland (Macugen and Lucentis), a third "off labels product", Avastin is also currently used in clinical practice. Nevertheless, both the duration of treatment and the number of injection requested to stabilise the disease were not defined in the studies. Ongoing studies are mainly evaluating combined treatments and long acting form of the drug.
Resumo:
Does a conflict between inborn motor preferences and educational standards during childhood impact the structure of the adult human brain? To examine this issue, we acquired high-resolution T1-weighted magnetic resonance scans of the whole brain in adult "converted" left-handers who had been forced as children to become dextral writers. Analysis of sulcal surfaces revealed that consistent right- and left-handers showed an interhemispheric asymmetry in the surface area of the central sulcus with a greater surface contralateral to the dominant hand. This pattern was reversed in the converted group who showed a larger surface of the central sulcus in their left, nondominant hemisphere, indicating plasticity of the primary sensorimotor cortex caused by forced use of the nondominant hand. Voxel-based morphometry showed a reduction of gray matter volume in the middle part of the left putamen in converted left-handers relative to both consistently handed groups. A similar trend was found in the right putamen. Converted subjects with at least one left-handed first-degree relative showed a correlation between the acquired right-hand advantage for writing and the structural changes in putamen and pericentral cortex. Our results show that a specific environmental challenge during childhood can shape the macroscopic structure of the human basal ganglia. The smaller than normal putaminal volume differs markedly from previously reported enlargement of cortical gray matter associated with skill acquisition. This indicates a differential response of the basal ganglia to early environmental challenges, possibly related to processes of pruning during motor development.
Resumo:
The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a child's brain.
Resumo:
Purpose: Previous studies of the visual outcome in bilateral non-arteritic anterior ischemic optic neuropathy (NAION) have yielded conflicting results, specifically regarding congruity between fellow eyes. Prior studies have used measures of acuity and computerized perimetry but none has compared Goldmann visual field outcomes between fellow eyes. In order to better define the concordance of visual loss in this condition, we reviewed our cases of bilateral sequential NAION, including measures of visual acuity, pupillary function and both pattern and severity of visual field loss.Methods: We performed a retrospective chart review of 102 patients with a diagnosis of bilateral sequential NAION. Of the 102 patients, 86 were included in the study for analysis of final visual outcome between the affected eyes. Visual function was assessed using visual acuity, Goldmann visual fields, color vision and RAPD. A quantitative total visual field score and score per quadrant was analyzed for each eye using the numerical Goldmann visual field scoring method previously described by Esterman and colleagues. Based upon these scores, we calculated the total deviation and pattern deviation between fellow eyes and between eyes of different patients. Statistical significance was determined using nonparametric tests.Results: A statistically significant correlation was found between fellow eyes for multiple parameters, including logMAR visual acuity (P = 0.0101), global visual field (P = 0.0001), superior visual field (P = 0.0001), and inferior visual field (P = 0.0001). In addition, the mean deviation of both total (P = 0.0000000007) and pattern (P = 0.000000004) deviation analyses was significantly less between fellow eyes ("intra"-eyes) than between eyes of different patients ("inter"-eyes).Conclusions: Visual function between fellow eyes showed a fair to moderate correlation that was statistically significant. The pattern of vision loss was also more similar in fellow eyes than between eyes of different patients. These results may help allow better prediction of visual outcome for the second eye in patients with NAION. These findings may also be useful for evaluating efficacy of therapeutic interventions.
Resumo:
Quase tudo do pouco que sabemos sobre o conhecimento produzido nos chega pelos meios de informação e comunicação. Estes, por sua vez, também constroem imagens do mundo. Imagens para deleitar, entreter, vender, sugerindo o que devemos vestir, comer, aparentar, pensar. Em nossa sociedade contemporânea discute-se a necessidade de uma alfabetização visual, que se expressa em várias designações, como leitura de imagens e compreensão crítica da cultura visual. Freqüentes mudanças de expressões e conceitos dificultam o entendimento dessas propostas para o currículo escolar, assim como a própria definição do professor ou professora que será responsável por esse conhecimento e seu referencial teórico. Este artigo apresenta os conceitos que fundamentam as propostas da leitura de imagens e cultura visual, sinalizando suas proximidades e distâncias. Contrasta alguns referenciais teóricos da antropologia, arte, educação, história, sociologia, e sugere linhas de trabalho em ambientes de aprendizagem para que se possa refletir a permanente formação docente.
Resumo:
The morphology and distribution of local-circuit neurons (interneurons) were examined, by calbindin D-28k and parvalbumin immunocytochemistry, in the frontal cortex (area 8) in two patients with frontal lobe dementia of non-Alzheimer type associated with classical amyotrophic lateral sclerosis (ALS), and in seven normal cases. The density of calbindin D-28k immunoreactive cells was dramatically reduced in ALS patients, but the density of parvalbumin-immunoreactive neurons was preserved. Decreased density of calbindin D-28k-immunoreactive neurons, which are mainly located in the upper cortical layers, may interfere with the normal processing of cortico-cortical connections, whereas integrity of parvalbumin-immunoreactive cells may be associated with the preservation of the major inhibitory intracortical circuits in patients with frontal lobe dementia.