965 resultados para Via 3 Febbr. 1831
Resumo:
Myelosuppression is the most common unwanted side effect associated with the administration of anticancer drugs, and infections remain a common cause of death in chemotherapy-treated patients. Several mechanisms of the cytotoxicity of these drugs have been proposed and may synergistically operate in a given cell. Survivin expression has been associated with cancer, but recent reports suggest that this molecule is also expressed in several immature and mature hematopoietic cells. Here, we provide evidence that treatment of immature neutrophils with anticancer drugs reduced endogenous survivin levels causing apoptosis. The anticancer drugs did not directly target survivin, instead they blocked the activity of phosphatidylinositol-3-OH kinase, which regulated survivin expression and apoptosis in these cells. Strikingly, and in contrast to other cells, this pathway did not involve the serine/threonine kinase c-akt/PKB. Moreover, in combination with anticancer drug therapy, rapamycin did not induce increased myelosuppression in an experimental lymphoma mouse model. These data suggest that drugs that block either c-akt/PKB or signaling molecules located distal to c-akt/PKB may preferentially induce apoptosis of cancer cells as they exhibit no cytotoxicity for immature neutrophils.
Resumo:
The spatial segregation of the plasma membrane plays a prominent role in distinguishing and sorting a large number of signals a cell receives simultaneously. The plasma membrane comprises regions known as lipid rafts, which serve as signal-transduction hubs and platforms for sorting membrane-associated proteins. Ca(2+)-binding proteins of the annexin family have been ascribed a role in the regulation of raft dynamics. Glycosylphosphatidylinositol-anchored 5'-nucleotidase is an extracellular, raft-associated enzyme responsible for conversion of extracellular ATP into adenosine. Our results point to a regulation of ecto-5'-nucleotidase activity by Ca(2+)-dependent, annexin-mediated stabilization of membrane rafts.
Resumo:
Alboluxin, a potent platelet activator, was purified from Trimeresurus albolabris venom with a mass of 120 kDa non-reduced and, after reduction, subunits of 17 and 24 kDa. Alboluxin induced a tyrosine phosphorylation profile in platelets that resembles those produced by collagen and convulxin, involving the time dependent tyrosine phosphorylation of Fc receptor gamma chain (Fc gamma), phospholipase Cgamma2 (PLCgamma2), LAT and p72SYK. Antibodies against both GPIb and GPVI inhibited platelet aggregation induced by alboluxin, whereas antibodies against alpha2beta1 had no effect. Inhibition of alphaIIb beta3 reduced the aggregation response to alboluxin, as well as tyrosine phosphorylation of platelet proteins, showing that activation of alphaIIb beta3 and binding of fibrinogen are involved in alboluxin-induced platelet aggregation and it is not simply agglutination. N-terminal sequence data from the beta-subunit of alboluxin indicates that it belongs to the snake C-type lectin family. The C-type lectin subunits are larger than usual possibly due to post-translational modifications such as glycosylation. Alboluxin is a hexameric (alphabeta)3 snake C-type lectin which activates platelets via both GPIb and GPVI.
Resumo:
The primary visual cortex (V1) is pre-wired to facilitate the extraction of behaviorally important visual features. Collinear edge detectors in V1, for instance, mutually enhance each other to improve the perception of lines against a noisy background. The same pre-wiring that facilitates line extraction, however, is detrimental when subjects have to discriminate the brightness of different line segments. How is it possible to improve in one task by unsupervised practicing, without getting worse in the other task? The classical view of perceptual learning is that practicing modulates the feedforward input stream through synaptic modifications onto or within V1. However, any rewiring of V1 would deteriorate other perceptual abilities different from the trained one. We propose a general neuronal model showing that perceptual learning can modulate top-down input to V1 in a task-specific way while feedforward and lateral pathways remain intact. Consistent with biological data, the model explains how context-dependent brightness discrimination is improved by a top-down recruitment of recurrent inhibition and a top-down induced increase of the neuronal gain within V1. Both the top-down modulation of inhibition and of neuronal gain are suggested to be universal features of cortical microcircuits which enable perceptual learning.
Resumo:
Contractile tissues demonstrate a pronounced capacity to remodel their composition in response to mechanical challenges. Descriptive evidence suggests the upstream involvement of the phosphotransfer enzyme FAK (focal adhesion kinase) in the molecular control of load-dependent muscle plasticity. Thereby FAK evolves as a myocellular transducer of mechanical signals towards downstream transcript expression in myofibres. Recent advances in somatic gene therapy now allow the exploration of the functional involvement of this enzyme in mechanotransduction in intact muscle.
Resumo:
During therapeutic hyperbaric oxygenation lymphocytes are exposed to high partial pressures of oxygen. This study aimed to analyze the mechanism of apoptosis induction by hyperbaric oxygen. For intervals of 0.5-4 h Jurkat-T-cells were exposed to ambient air or oxygen atmospheres at 1-3 absolute atmospheres. Apoptosis was analyzed by phosphatidylserine externalization, caspase-3 activation and DNA-fragmentation using flow cytometry. Apoptosis was already induced after 30 min of hyperbaric oxygenation (HBO, P < 0.05). The death receptor Fas was downregulated. Inhibition of caspase-9 but not caspase-8 blocked apoptosis induction by HBO. Hyperbaric oxygen caused a loss of mitochondrial membrane potential and caspase-9 induction. The mitochondrial pro-survival protein Bcl-2 was upregulated, and antagonizing Bcl-2 function potentiated apoptosis induction by HBO. In conclusion, a single exposure to hyperbaric oxygenation induces lymphocyte apoptosis by a mitochondrial and not a Fas-related mechanism. Regulation of Fas and Bcl-2 may be regarded as protective measures of the cell in response to hyperbaric oxygen.
Resumo:
The statins, a group of inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, are reported to influence a variety of immune system activities through 3-hydroxy-3-methylglutaryl coenzyme A reductase-dependent and -independent mechanisms. How statin treatment regulates immune system function in vivo nonetheless remains to be fully defined. We analyzed the immunomodulatory effects of lovastatin in a Candida albicans-induced delayed-type hypersensitivity reaction in mice. In this model, lovastatin administration reduced the acute inflammatory response elicited by C. albicans challenge. This anti-inflammatory activity of lovastatin was associated with a shift from a Th1 to a Th2 immune response, as well as an increase in the percentage of regulatory T cells at the inflammation site and in the regional draining lymph node. The lovastatin-induced increase in regulatory T cells in the inflamed skin was dependent on expression of CCL1, a chemokine that is locally up-regulated by statin administration. The anti-inflammatory effect of lovastatin was abrogated in CCL1-deficient mice. These results suggest that local regulation of chemokine expression may be an important process in statin-induced modulation of the immune system.
Resumo:
Liver fibrosis is characterized by high expression of the key profibrogenic cytokine transforming growth factor (TGF)-beta and the natural tissue inhibitor of metalloproteinases (TIMP)-1, leading to substantial accumulation of extracellular matrix. Liver fibrosis originates from various chronic liver diseases, such as chronic viral hepatitis that, to date, cannot be treated sufficiently. Thus, novel therapeutics, for example, those derived from Oriental medicine, have gained growing attention. In Korea, extracts prepared from Lindera obtusiloba are used for centuries for treatment of inflammation, improvement of blood circulation and prevention of liver damage, but experimental evidence of their efficacy is lacking. We studied direct antifibrotic effects in activated hepatic stellate cells (HSCs), the main target cell in the fibrotic liver. L. obtusiloba extract (135 mug/ml) reduced the de novo DNA synthesis of activated rat and human HSCs by about 90%, which was not accompanied by cytotoxicity of HSC, primary hepatocytes and HepG2 cells, pointing to induction of cellular quiescence. As determined by quantitative polymerase chain reaction, simultaneous treatment of HSCs with TGF-beta and L. obtusiloba extract resulted in reduction of TIMP-1 expression to baseline level, disruption of the autocrine loop of TGF-beta autoinduction and increased expression of fibrolytic matrix metalloproteinase (MMP)-3. In addition, L. obtusiloba reduced gelatinolytic activity of HSC by interfering with profibrogenic MMP-2 activity. Since L. obtusiloba extract prevented intracellular oxidative stress experimentally induced by tert-butylhydroperoxide, we concluded that the direct antifibrotic effect of L. obtusiloba extract might be mediated by antioxidant activity. Thus, L. obtusiloba, traditionally used in Oriental medicine, may complement treatment of chronic liver disease.
Resumo:
Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.
Resumo:
OBJECTIVE: Anatomic reduction and stable fixation by means of tissue- preserving surgical approaches. INDICATIONS Displaced acetabular fractures. Surgical hip dislocation approach with larger displacement of the posterior column in comparison to the anterior column, transtectal fractures, additional intraarticular fragments, marginal impaction. Stoppa approach with larger displacement of the anterior column in comparison to the posterior column. A combined approach might be necessary with difficult reduction. CONTRAINDICATIONS Fractures > 15 days (then ilioinguinal or extended iliofemoral approaches). Suprapubic catheters and abdominal problems (e.g., previous laparotomy due to visceral injuries) with Stoppa approach (then switch to classic ilioinguinal approach). SURGICAL TECHNIQUE: Surgical hip dislocation: lateral decubitus position. Straight lateral incision centered over the greater trochanter. Entering of the Gibson interval. Digastric trochanteric osteotomy with protection of the medial circumflex femoral artery. Opening of the interval between the piriformis and the gluteus minimus muscle. Z-shaped capsulotomy. Dislocation of the femoral head. Reduction and fixation of the posterior column with plate and screws. Fixation of the anterior column with a lag screw in direction of the superior pubic ramus. Stoppa approach: supine position. Incision according to Pfannenstiel. Longitudinal splitting of the anterior portion of the rectus sheet and the rectus abdominis muscle. Blunt dissection of the space of Retzius. Ligation of the corona mortis, if present. Blunt dissection of the quadrilateral plate and the anterior column. Reduction of the anterior column and fixation with a reconstruction plate. Fixation of the posterior column with lag screws. If necessary, the first window of the ilioinguinal approach can be used for reduction and fixation of the posterior column. POSTOPERATIVE MANAGEMENT: During hospital stay, intensive mobilization of the hip joint using a continuous passive motion machine with a maximum flexion of 90 degrees . No active abduction and passive adduction over the body's midline, if a surgical dislocation was performed. Maximum weight bearing 10-15 kg for 8 weeks. Then, first clinical and radiographic follow-up. Deep venous thrombosis prophylaxis for 8 weeks postoperatively. RESULTS: 17 patients with a mean follow-up of 3.2 years. Ten patients were operated via surgical hip dislocation, two patients with a Stoppa approach, and five using a combined or alternative approach. Anatomic reduction was achieved in ten of the twelve patients (83%) without primary total hip arthroplasty. Mean operation time 3.3 h for surgical hip dislocation and 4.2 h for the Stoppa approach. Complications comprised one delayed trochanteric union, one heterotopic ossification, and one loss of reduction. There were no cases of avascular necrosis. In two patients, a total hip arthroplasty was performed due to the development of secondary hip osteoarthritis.
Resumo:
CD4(+) T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)-transgenic (tg) CD4(+) T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3Kdelta(D910A/D910A) or PI3Kgamma-deficient TCR-tg CD4(+) T cells showed similar responsiveness to CCL21 costimulation as control CD4(+) T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4(+) T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca(2+) signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.
Resumo:
A general, two-step highly efficient synthesis of 1,2-diaryl-, 1,2,3-triaryl- and 1,2,3,4-tetraarylbenzenes from simple stitching of alpha-oxo-ketene-S,S-acetals and active methylene compounds via a ‘lactone intermediate’ is described. This procedure offers easy access to highly functionalized arylated-benzenes containing sterically demanding groups in good to excellent yields. The novelty of the procedure lies in the fabrication of aromatic compounds with desired conformational flexibility along the molecular axis in a transition metal-free environment through easily accessible precursors. The crystal analysis of these arylated-benzene scaffolds showed that the peripheral aryl rings are arranged in propeller-like fashion with respect to the central benzene rings. Examination of the crystal packing in the structure of a 1,2,3,4-tetraarylbenzene 12c revealed a “N…pi interaction” between molecules related by a two-fold screw axis running in a direction. It is interesting that the repeat of the array of N…pi interaction around the axis of the 1,2,3,4-tetraarylbenzene 12c enforces the molecules in a helical pattern.
Resumo:
The formation of substituted 2-pyrrolidinones and indoles by the reduction of the secondary nitro group in appropriate 3-aryl-2-methylene-4-nitroalkanoates afforded by Baylis-Hillman chemistry via different reducing agents is described. The 3-aryl-2-methylene-4-nitroalkanoate obtained from SN2 nucleophilic reaction between the acetate of Baylis-Hillman adducts and ethyl nitroacetate upon reduction with indium-HCl furnishes a mixture of cis and trans substituted phenyl-3-methylene-2-pyrrolidinones. In contrast, similar reductions of analogous substrates derived from nitroethane stereoselectively furnished only the trans substituted phenyl-3-methylene-2-pyrrolidinones. On the other hand the SnCl2.2H2O-promoted reductions of substrates derived from nitro ethylacetate give oxime derivatives while the ones obtained from nitroethane yield a mixture of cis and trans 4-aryl-3-methylene-2-pyrrolidinones. Alternatively, the SnCl2.2H2O-promoted reduction of substituted 2-nitrophenyl-2-methylene-alkanoate furnished from ethyl nitroacetate yields 3-(1-alkoxycarbonyl-vinyl)-1H-indole-2-carboxylate while indium-promoted reaction of this substrate leads to a complex mixture. Analogous reactions with SnCl2.2H2O of substituted 2-nitrophenyl-2-methylene-alkanoate obtained from nitroethane yield 4-alkyl-3-methylene-2-quinolones in moderate yields